DOI QR코드

DOI QR Code

A Study on Slurry Isolation Through Chemical Processing, with Comparative Analysis and Validation

화학적 처리를 적용한 Slurry 분리 및 비교분석 검증 연구

  • 나원식 (남서울대학교 교양과정부)
  • Received : 2013.02.23
  • Accepted : 2013.03.22
  • Published : 2013.03.31

Abstract

The use of slurry with a mix of abrasives and coolant for making Wire Saw in the photovoltaic industry has sharply increased with the semiconductor wafer. In this paper, the slurry was isolated, purified and dried by microwave drying method with high-purity silicon carbide powder obtained through chemical processing. Dried slurry bulk was first pulverized and chemical treatment was applied to produce powder. The produced slurry powder was then analyzed by going through the following analysis; thermal analysis, particle size analyses: SEM shots, elemental analysis, XRF and XRD. The results of this study found the recovery rate of the power obtained though the chemical processing to be higher than the one obtained from mineral processing. The results anticipate infrastructure building and active responses to increasingly stronger domestic and international environmental regulations through the integration and recycling of large amounts of slurry in the photovoltaic industry.

연마재와 Coolant를 이용한 슬러리는 그동안 반도체 웨이퍼를 시작으로 태양광 산업의 Wire Saw에서 사용량이 급격히 증가하였다. 이에 본 논문에서는 슬러리를 분리 정제하여, 수세뿐만 아니라 화학적 처리를 통하여 보다 고순도의 실리콘카바이드 분말을 얻어, 마이크로웨이브 건조방식으로 건조하였다. 건조한 슬러리 벌크를 분쇄하고 화학적 처리까지 수행하여 제작한 Powder를 각각 열분석, 입도분석, SEM 촬영, 성분분석, XRF, XRD을 통하여 분석하였다. 본 연구 결과 화학적 처리를 통하여 얻은 Powder의 회수율이 수세 처리를 통하여 얻은 Powder 보다 더 높아지는 것을 알 수 있었다. 태양광 소재 산업에서 발생하는 다량의 슬러리를 통합, 재활용함으로 점차 강화되고 있는 국내외 환경 규제에 적극 대응하고, 관련 소재 산업의 인프라 구축 효과를 기대할 수 있다.

Keywords

References

  1. Wonshik Na and Jae-ha Lee, "A Development of Recycling Technology of Solar Cell Wafering Slurry", Journal of the Korea Navigation Institute, Vol. 14, No.3, June, 2010.
  2. Tzu-Hsuan Tsai, "Pretreatment of recycling wiresaw slurries-Iron removal using acid treatment and electrokinetic separation", Separation and PurificationTechnology, 24-29, 2009.
  3. Lifeng Zhang, Arjan Ciftja, "Recycling of solar cellsilicon acraps through filtration, Part 1:Experimental investigation" Solar Energy Materials & Solar Cells, 1450-1461, 2008.
  4. A.A latratov and T. Buonassisi, "Metal content of multicrystalline silicon for solar cells and its impact on minority carrier diffusion length", JOURNAL OFAPPLIED PHYSICS VOLUME 94, NUMBER 10, 2005.
  5. T.F.Ciszek, T.H. Wang, M.R. Page, R.E. Bauer and M.D. Landry, "Solar-Grade Silicon from Metallurgical-Grade Silicon Via lodine Chemical Vapor Transport Purification", To be presented at the 29th IEEE PV Specialists Conference New Orleans, Louisiana May 20-24, 2002.
  6. T.Y. Wang, Y.C. Lin, C.Y. Tai, R. Sivakumar, D.K.Rai, C.W. Lan, "A novel approach for recycling ofkerf loss silicon from cutting slurry waste for solarcell applications", Journal of Crystal Growth 310(2008) 3403-3406, 2002. https://doi.org/10.1016/j.jcrysgro.2008.04.031
  7. The 4th workshop on the future direction of photovoltaics, ZSW, 2008.
  8. Myoun-Jae Lee, "Performance Evaluation focused on Burst of Smoothing Algorithms", Journal of Digital Contents Society, Vol.13, No.1, 2012.
  9. Future State of PV Industry-Trends and Technologies, 2007.
  10. The 22nd EU PV Solar Conference, Indium Corperation, 2007.
  11. Jeong-Hee Hwang, "A Method of Frequent Structure Detection Based on Active Sliding Window", Journal of Digital Contents Society, Vol.13, No.1, 2012. https://doi.org/10.9728/dcs.2012.13.1.021