DOI QR코드

DOI QR Code

Genetic Diversity and Structure of the Korean Endemic Species, Coreanomecon hylomeconoides Nakai, as Revealed by ISSR markers

한국 특산식물 매미꽃(Coreanomecon hylomeconoides Nakai) 집단의 유전다양성 및 구조

  • Received : 2013.03.04
  • Accepted : 2013.04.25
  • Published : 2013.04.30

Abstract

The genetic diversity and structure of eight populations of Coreanomecon hylomeconoides Nakai, an endemic Korean plant, were investigated using 50 ISSR loci from eight primers. The average percentage of polymorphic loci was 47.3%. The Shannon's index (SI=0.218) and gene diversity (h=0.142) were relatively lower than those of other long-lived perennials. The Sancheong (SI=0.233, h=0153), Gwangyang (SI=0.263, h=0.171), and Suncheon (SI=0.241, h=0.159) populations showed greater genetic diversity than the Namhae and Gwangju populations, which are on the edge of the distribution. Analysis of molecular variance (AMOVA) showed that 18% of the total variation could be attributed to differences among populations, and 82% to differences within populations, indicating moderate gene flow among adjacent populations. These results were supported by value of Nm (2.184). The UPGMA conducted using the genetic distance and Bayesian cluster analysis showed a remarkable geographic trend structured into east and west regions. Overall, the results indicate that the Sancheong and Gwangyang populations, which had a large population size and higher degree of genetic diversity, should be the focus of in situ conservation.

우리나라 특산식물인 매미꽃(Coreanomecon hylomeconoides Nakai) 집단의 유전적 다양성 및 구조를 조사하기 위해 8집단 224개체에 대한 ISSR(Inter Simple Sequence Repeat) 분석이 수행되었다. 총 8개의 ISSR 프라이머를 이용하여 50개의 증폭산물을 관찰하였으며 집단 수준에서의 유전적 다양성의 평균은 P (Percentage of polymorphic loci) = 47.3%, SI(Shannon's information index) = 0.218, h (Nei's genetic diversity) = 0.142로 다년생 초본류의 평균보다는 월등히 낮게 나타났다. 집단별로는 분포의 중심에 해당하는 산청(SI=0.233, h=0153), 광양(SI=0.263, h=0.171), 순천(SI=0.241, h=0.159) 집단이 남해(SI=0.183, h=0.116)나 광주(SI=0.181, h=0.121)의 변두리 집단보다는 비교적 높은 유전다양성을 유지하는 것으로 나타났다. AMOVA 분석 결과 전체 유전변이의 약 18%가 지역 간에 나머지 82%가 집단 내 개체간의 차이에 기인하는 것으로 나타났는데 이는 집단 간에 유전자 교류가 원활히 이루어지기 때문으로 판단된다. 유전적 거리를 이용한 UMGMA 유집분석과 Bayesian cluster 분석 결과, 매미꽃 집단은 동서 두 지역으로 구조화 되는 경향을 보여 주었는데 이는 집단의 지리적 분포 패턴의 영향인 것으로 추정할 수 있다. 본 연구 결과, 조사된 다른 집단보다 풍부한 개체수와 높은 유전 다양성을 유지하고 있는 지리산 및 백운산의 산청, 광양 집단들에 대한 적극적인 현지 내(in situ) 보전대책 수립이 요구된다.

Keywords

References

  1. Avise, J.C. 1994. Molecular Markers, Natural History and Evolution. Chapman and Hall, New York, USA.
  2. Barrett, S.C.H. and J.R. Kohn. 1991. Genetic and evolutionary consequences of small population size in plants; Implications for conservation: In Falk, D.A. and K.E. Holsinger (eds.), Genetics and Conservation of Rare Plants, Oxford University Press, Oxford, U.K. pp. 3-30.
  3. Doyle, J.J. and J.A. Doyle. 1987. A rapid DNA isolation procedure of small quantities of fresh leaf tissue. Phytochem. Bull. Bot. Soc. Amer. 19:11-15.
  4. Ellstrand, N.C. and D.R. Elam. 1993. Population genetic consequences of small population size; Implication for plant conservation. Annu. Rev. Ecol. Syst. 24:217-242. https://doi.org/10.1146/annurev.es.24.110193.001245
  5. Evanno, G., S. Regnaut and J. Goudet. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14:47-50.
  6. Excoffier, L.G.L. and S. Schneider. 2005. Arlequin ver. 3.0.: An integrated software package for population genetics data analysis. Evol. Bioinform. Online 1:47-50.
  7. Falush, D., M. Stephens and J.K. Pritchard. 2003. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164: 1564-1587.
  8. Felsenstein, J. 1993. PHYLIP v3.5c. Department of Genetics, University of Washington, Seattle.
  9. Gaudeul, M., P. Taberlet and I. Till-Bottraud. 2000. Genetic diversity in an endangered alpine plant, Eryngium alpinum L. (Apiaceae), inferred from amplified fragment length polymorphism markers. Mol. Ecol. 9:1627-1637.
  10. Godt, M.J.W., F. Caplow and J.L. Hamrick. 2005. Allozyme diversity in the federally threatened golden paintbrush, Castilleja levisecta (Scrophulariaceae). Conserv. Genet. 6:87-99. https://doi.org/10.1007/s10592-004-7746-5
  11. Hamrick, J.L. and M.J.W. Godt. 1996. Conservation genetics of endemic plant species: In Avise, J.C. and J.L. Hamrick (eds.), Conservation Genetics, Chapman and Hall, New York. pp. 281-304.
  12. Hartl, D.L. and A.G. Clark. 1997. Principle of Population Genetics. Sinauer Association Inc., Sunderland, Massachusetts, pp. 524.
  13. Helenurm, K., R. West and S.J. Burckhalter. 2005. Allozyme variation in the endangered insular endemic Castilleja grisea. Ann. Bot. London 95:1221-1227. https://doi.org/10.1093/aob/mci135
  14. Hilfiker, K., F. Gugerli, J.P. Schütz, P. Rotach and R. Holderegger. 2004. Low RAPD varitation and female- biased sex ratio indicate genetic drift in small populations of the dioecious conifer Taxus baccata in Switzerland. Conserv. Genet. 5:357-365. https://doi.org/10.1023/B:COGE.0000031144.95293.1b
  15. Jeong, J.H., E.H. Kim, W. Guo, K.O. Yoo, D.G. Jo and Z.S. Kim. 2010. Genetic diversity and structure of the endangered species Megaleranthis saniculifolia in Korea as revealed by allozyme and ISSR markers. Plant Syst. Evol. 289:67-76. https://doi.org/10.1007/s00606-010-0333-y
  16. Kim, M.Y. 2004. Korean Endemic Plants. Solkwahak, Seoul, Korea. p. 12 (in Korean).
  17. Kim, M.Y., S.Y. Kwon and K.R. Park. 1999. Reexamination the generic status of the Korean endemic Coreanomecon within subfamily Chelidinioideae (Papaveraceae). Korean J. Pl. Taxon. 29:295-305 (in Korean).
  18. Kim, S.Y., Y.D. Kim, J.S. Kim, B.H. Yang, S.H. Kim and B.C. Lee. 2009. Genetic diversity of Forsythia ovata Nakai (Oleaceae) based on inter-simple sequence repeats (ISSR). Korean J. Pl. Taxon 39:48-54 (in Korean).
  19. Kim, Z.S., D.G. Jo, J.H. Jeong, Y.H. Kim, K.O. Yoo and K.S. Cheon. 2010. Genetic diversity and structure of Pulsatilla tongkangensis as inferred from ISSR markers. Korean J. Plant. Res. 23(4):360-367 (in Korean).
  20. Korea National Arboretum. 2008. Rare Plants Data Book in Korea. Korean National Arboretum, Pocheon, Korea. p. 224 (in Korean).
  21. Lee, S.T. and M.Y. Kim. 1984. A palynotaxonomic study of Coreanomecon hylomeconoides Nakai (Papaveraceae) and its closely related species. Korean J. Pl. Taxon 14:181-186 (in Korean).
  22. Lee, T.B. 1980. Illustrated Flora of Korea. Hyangmunsa, Seoul, Korea (in Korean).
  23. Lee, W.T. 1996. Lineamenta Florae Koreae. Academy Publishing Co., Seoul, Korea (in Korean).
  24. Lee, Y.N. 1973. Taxonomic study on genus Hylomecon. J. Korean Res. Inst. Better Living 11:127.
  25. Milligan, B.G., J. Leebens-Mack and A.E. Strand. 1994. Conservation genetics: beyond the maintenance of marker diversity. Mol. Ecol. 12:844-855.
  26. Ministry of Environment of Korea. 2006. A Guide to the Third National Natural Environment Research pp. 114-155 (in Korean).
  27. Nakai, T. 1935. Coreanomecon hylomeconoides Nakai. J. Jap. Bot. 11:151.
  28. Nei, M. 1973. Analysis of gene diversity in subdivided population. Proc. Natl. Acad. Sci. U.S.A. 70:3321-3323. https://doi.org/10.1073/pnas.70.12.3321
  29. Nybom, H. and IV. Bartish. 2000. Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers on plants. Perspect. Plant Ecol. Evol. Syst. 3:93-114. https://doi.org/10.1078/1433-8319-00006
  30. Nybom, H. 2004. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity on plant. Mol. Ecol. 13:1143-1155. https://doi.org/10.1111/j.1365-294X.2004.02141.x
  31. Oh, B.U., D.G. Jo, K.S. Kim and C.G. Jang. 2005. Endemic Vascular Plants in the Korean Peninsula. Korea National Arboretum, Pocheon, Korea (in Korean).
  32. Oh, S.Y. 1985. The enumerative and phytogeographical studies of Papaveraceae in Korea. Res. Rev. Kyungpook Nat. Univ. 40:99-133 (in Korean).
  33. Pritchard, J.K., X. Wen and D. Falush. 2007. Documentation for structure software: version 2.2. University of Chicago, Chicago, pp. 1-36.
  34. Qiu, Y.X., D.Y. Hong, C.X. Fu and K.M. Cameron. 2004. Genetic variation in the endangered and endemic species Changium smyrnioides (Apiaceae) Biochem. Syst. Ecol. 32:583-596. https://doi.org/10.1016/j.bse.2003.08.004
  35. Rasmussen, K.K. and J. Kollmann. 2008. Low genetic diversity in small peripheral population of a rare European tree (Sorbus torminalis) dominated by clonal reproduction. Conserv. Genet. 9:1533-1539. https://doi.org/10.1007/s10592-007-9492-y
  36. Saghai-maroof, M.A., K.M. Soliman, R.A. Jorgensen and R.W. Allard. 1984. Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamic. Proc. Natl. Acad. Sci. U.S.A. 81:8014-8018. https://doi.org/10.1073/pnas.81.24.8014
  37. Shannon, C.E. and W. Weaver. 1949. The mathematical theory of communication. University of Illinois Press, Urbana, Illinois.
  38. Sneath, P.H.A. and R.R. Sokal. 1973. Numerical Taxonomy, Freeman San Francisco, CA. pp. 573.
  39. Son, S.W., J.M. Chung, J.K. Shin, B.C. Lee, K.W. Park and S Park. 2012. Distribution, vegetation characteristics and assessment of the conservation status of a rare and endemic plnat, Coreanomecon hylomeconoides Nakai. Korean J. Pl. Taxon 42:116-125 (in Korean). https://doi.org/10.11110/kjpt.2012.42.2.116
  40. Tero, N., J. Aspi, P. Siikamaki, A. Jakalaniemi and J. Tuomi. 2003. Genetic structure and gene flow in a metapopulation of an endangered plant species, Silene tatarica. Mol. Ecol. 12:2073-2085. https://doi.org/10.1046/j.1365-294X.2003.01898.x
  41. Xia, T., S. Chen, S. Chen and X. Ge. 2005. Genetic variation within and among population of Rhodiola alsia (Crassulaceae) native to the Tibetan Plateau as detected by ISSR marker. Biochem. Genet. 43:87-101. https://doi.org/10.1007/s10528-005-1502-5
  42. Xiao, L.Q., X.J. Ge, X. Gong, G. Hao and S.X. Zheng. 2004. ISSR variation in the endemic and endangered plant Cycas guizhouensis (Cycadaceae). Ann. Bot. 94:133-138. https://doi.org/10.1093/aob/mch119
  43. Yeh, F.C., R.C. Yang and T. Boyle. 1999. POPGENE. Microsoft Windows based freeware for population genetic analysis. Release 1.31. University of Alberta, Edmonton.

Cited by

  1. Genetic Diversity and Structure of the Korean Rare and Endemic Species, Deutzia pdaniculata Nakai, as Revealed by ISSR Markers vol.26, pp.5, 2013, https://doi.org/10.7732/kjpr.2013.26.5.619
  2. 부산광역시 장산 일대의 관속식물상 vol.24, pp.3, 2021, https://doi.org/10.13087/kosert.2021.24.3.49