DOI QR코드

DOI QR Code

The Performance Degradation of PEMFCs Fabricated with Different GDLs During Exposure to Simultaneous Sulfur Impurity Poisoning Condition

서로 다른 GDL을 이용한 고분자전해질 막 연료전지의 황불순물 복합피독에 의한 성능 저하

  • Lee, Soo (Department of Chemical Engineering, Changwon National University) ;
  • Kim, Jae-Hyun (Department of Chemical Engineering, Changwon National University) ;
  • Jin, Seok-Hwan (Department of Chemical Engineering, Changwon National University)
  • 이수 (창원대학교 공과대학 화공시스템공학과) ;
  • 김재현 (창원대학교 공과대학 화공시스템공학과) ;
  • 진석환 (창원대학교 공과대학 화공시스템공학과)
  • Received : 2013.02.26
  • Accepted : 2013.03.22
  • Published : 2013.03.30

Abstract

This paper reveals the performance decrease and recovery of PEMFC when the contaminated fuel gas and air source with sulfur impurities such as hydrogen sulfide and sulfur dioxide were simultaneously introduced to anode and cathode, respectively. Three different GDLs were fabricated with different carbon black and activated carbon to prevent an introduction of sulfur compound impurities into MEA. components. The severity of $SO_2$ and $H_2S$ poisoning was depended on concentrations(3 ppm - 10 ppm) of sulfur impurities. Especially, cell performance degradation rate was rapid when MEA fabricated with CN-2 GDL because it had little porosity on GDL surface. Moreover, the cell performance can be recovered up to 90%-95% only with neat hydrogen and fresh air feeding.. Conclusively, MEA fabricated with porous CN-1 GDL showed the best cell performance and recovery efficiency during exposure to poisoning condition by simultaneous sulfur impurities.

본 연구에서는 연료극 또는 공기극에 함유된 불순물인 황화합물의 도입을 차단할 수 있는 GDL을 제조하여, 이를 평가용 단위전지에 체결하여 $H_2S$$SO_2$를 연료극과 공기극에 각각 동시에 공급하여 PEMFC의 성능 저하 및 회복에 관한 연구를 수행하였다. 그 결과 $H_2S$$SO_2$의 농도가 증가함에 따라 전지의 성능이 감소하며 특히 10 ppm 이상의 농도에서는 10분 이내에 약 10-15% 정도 성능이 감소하였다. 특히 GDL 표면의 기공이 없는 CN-2 GDL을 체결한 단위전지의 경우 피독에 의한 성능 감소 속도가 더 빠른 것을 확인하였다. 그리고 단위전지 피독 후 황화합물이 혼합되지 않은 순수 가스를 1시간 이상 공급하였을 때 전지의 성능이 GDL의 종류에 따라 90%에서 95% 이상 회복되며 CN-1 GDL의 경우가 가장 회복이 우수하였다.

Keywords

References

  1. H. S. Jeong, J. I. Kim, S. H. Lee, C. H. Lim, B. K. Ahn and C. J. Kim, Analysis of Mass Transport in PEMFC GDL, The Kor. Soci. of Mechenical Engineers, 36(10), 979 (2012) https://doi.org/10.3795/KSME-A.2012.36.9.979
  2. J. H. Nam, K. J. Lee, G. S. Hwang, C. J. Kim, and M. Kaviany, Microporous Layer for Water Morphology Control in PEMFC," Int. J. Heat Mass Transfer, 52, 2779 (2009). https://doi.org/10.1016/j.ijheatmasstransfer.2009.01.002
  3. J. Zhai, M. Hou, H. Zhang, Z. Zhou, J. Fu, Z. Shao, B. Yi, Study of sulfur dioxide crossover in proton exchange membrane fuel cells, J. of Power Sources, 196, 3172 (2011) https://doi.org/10.1016/j.jpowsour.2010.11.103
  4. W. Shi, B. Yi, M. Hou,, Z. Shao, The effect of H2S and CO mixtures on PEMFC performance, Inter. J. of Hydrogen Energy, 32, 4412 (2007) https://doi.org/10.1016/j.ijhydene.2007.06.029
  5. R. Mohtadi, W. K. Lee, S. Cowan, J. W. Van Zee, and M. Murthy, Effects of hydrogen sulfide on the performance of a PEMFC, Electrochem. and Solid-State Letters, 6, A272 (2003). https://doi.org/10.1149/1.1621831
  6. T. A. Zawodzinski, C. Karuppaiah, F. A. Uribe, and S. Gottesfeld. In Electrode Materials and Processes for Energy Conversion and Storage; Proceedings of the Electrochemical Society, 97-13. The Electrochemical Society, Pennington, 139 (1997).
  7. M. Wilson, C. Derouin, J. Valerio, and S. Gottesfeld, Proceedings of the Intersociety Energy Conversion Engineering Conference, Atlanta, Georgia, 1, 1203 (1993).
  8. S. Lee, and S. H. Jin, Single Cell Performance Recovery of SO2 Poisioned PEMFC using Cyclic Voltametry, J. of Kor. Oil Chemists Soc., 28(4), 497 (2011).
  9. S. Lee, and S. H. Jin, Study on the Performance Recovery of H2S Poisoned PEMFC, J. of Kor. Oil Chemists Soc., 29(1), 102 (2012).
  10. S. Lee, and S. H. Jin, The performance of PEMFC after hydrogen sulfide poisoning under various operating conditions, J. of Kor. Oil Chemists Soc., 28(1), 57 (2011).
  11. S. Lee, and S. H. Jin, The performance of PEMFC during exposure to simultaneous sulfur impurity poisoning on cathode and anode, J. of Kor. Oil Chemists Soc., 29(4), 594 (2012). https://doi.org/10.12925/jkocs.2012.29.4.594
  12. H. S. Jeon, H. S. Ahn, I. H. Song, H. K. Jeong, Y. T. Lee, and H. K. Lee, Separation of Sulfur Dioxide by Circulatory Porous Polymer Membrane Contactor, Membrane Journal, 17(4), 302 (2007)
  13. Y. J. Lee, I. H. Song, H. S. Jeon, H. S. Ahn, Y. T. Lee, and H. K. Lee, Absorptive Separation of Sulfur Dioxide using Flat Membrane Contactor, Membrane Journal, 16(3), 196, (2006)
  14. K. H. Kim, and C. S. Shin, Adsorption Characteristics of Impregnated Activated Carbon Fiber for the Removal of Hydrogen Sulfide at the Working Environment, The Kor. Soci. of Safety, 14(3), 127 (1999)
  15. H. O. Ryu, N. Y. Lee, K. S. Jo, Removal of High Strength Hydrogen Sulfide Gas using a Bioreactor Immobilized with Acidithiobacillus ferrooxidans and a Chemical Absorption Scrubber. Kor. J. of microbiol. and biotechnol., 32(4) 328 (2004)