DOI QR코드

DOI QR Code

A Carbazole-Attached NO2S2-Macrocycle Exhibiting Hg2+ and Cu2+ Selectivity

  • Lee, Seul-Gi (Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University) ;
  • Kang, Eun-Ju (Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University) ;
  • Lee, Shim Sung (Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University)
  • Received : 2013.02.04
  • Accepted : 2013.02.13
  • Published : 2013.05.20

Abstract

A synthesis and cation-induced fluorescent behavior of the carbazole-attached $NO_2S_2$-macrocycle (L) is described and structurally characterized by single crystal X-ray analysis. The photoluminescence spectrum of L in 80% $CH_3CN/CH_2Cl_2$ displays a peak maximum at 431 nm (blue emission). In the metal-induced fluorometric experiment, L showed a drastic chelation-enhanced fluorescence quenching (CHEQ) effect only with $Hg^{2+}$ and $Cu^{2+}$. In ESI-mass study, a 1:1 stoichiometry for complexation of L with $Hg^{2+}$ was confirmed, suggesting the unique sensing behavior of the proposed ligand L due to the selective complexation affinity for $Hg^{2+}$. The observed results indicate that L is a promising turn-off type fluoroionophore for $Hg^{2+}$ and $Cu^{2+}$ detections. Additionally, the $Ag^+$ complex of the precursor macrocycle was prepared and its solid structure was crystallographically characterized.

Keywords

References

  1. Czarnik, A. W. Fluorescent Chemosensors for Ion and Molecule Recognition; American Chemical Society: Washington, DC, 1993.
  2. Desvergne, J. P.; Czarnik, A. W. Chemosensors of Ion and Molecular Recognition; NATO ASI Series; Kluwer: Dordrecht, The Netherlands, 1997.
  3. Valeur, B. Molecular Fluorescence: Principles and Applications; Wiley-VCH: New York, 2001.
  4. Martínez-Máñez, R.; Sancenón, F. Chem. Rev. 2003, 103, 4419. https://doi.org/10.1021/cr010421e
  5. Hudson, Z. M.; Wang, S. Acc. Chem. Res. 2009, 42, 1584. https://doi.org/10.1021/ar900072u
  6. Quang, D. T.; Kim, J. S. Chem. Rev. 2010, 110, 6280. https://doi.org/10.1021/cr100154p
  7. Hirano, T.; Kikuchi, K.; Urano, Y.; Higuchi, T.; Nagano, T. Angew. Chem. Int. Ed. 2000, 39, 1052. https://doi.org/10.1002/(SICI)1521-3773(20000317)39:6<1052::AID-ANIE1052>3.0.CO;2-5
  8. Sancenon, F; Martinez-Manez, R.; Soto, J. Angew. Chem. Int. Ed. 2002, 41, 1416. https://doi.org/10.1002/1521-3773(20020415)41:8<1416::AID-ANIE1416>3.0.CO;2-2
  9. Park, C. S.; Lee, J. Y.; Kang, E.-J.; Lee, J.-E.; Lee, S. S. Tetrahedron Lett. 2009, 50, 671. https://doi.org/10.1016/j.tetlet.2008.11.090
  10. Czarnik, A. W. Acc. Chem. Res. 1994, 27, 302. https://doi.org/10.1021/ar00046a003
  11. de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; NcCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997, 97, 1515. https://doi.org/10.1021/cr960386p
  12. de Silva, A. P.; Fox, D. B.; Huxley, A. J. M.; Moody, T. S. Coord. Chem. Rev. 2000, 205, 41. https://doi.org/10.1016/S0010-8545(00)00238-1
  13. Amendola, V.; Rabbrizzi, L.; Lincchelli, M.; Mangano, C.; Pallavicini, P.; Parodi, L.; Poggi, A. Coord. Chem. Rev. 1999, 190, 649.
  14. (a) Jin, Y.; Yoon, I.; Seo, J.; Lee, J.-E.; Moon, S.-T.; Kim, J.; Han, S. W.; Park, K.-M.; Lindoy, L. F.; Lee, S. S. Dalton Trans. 2005, 788.
  15. Lee, J.-E.; Jin, Y.; Seo, J.; Yoon, I.; Song, M. R.; Lee, S. Y.; Park, K. M.; Lee, S. S. Bull. Korean Chem. Soc. 2006, 27, 203. https://doi.org/10.5012/bkcs.2006.27.2.203
  16. Lee, S. J.; Jung, J. H.; Seo, J.; Yoon, I.; Park, K.-M.; Lindoy, L. F.; Lee, S. S. Org. Lett. 2006, 8, 1641. https://doi.org/10.1021/ol0602405
  17. Lee, S. J.; Lee, J.-E.; Seo, J.; Jeong, I. Y.; Lee, S. S.; Jung, J. H. Adv. Funct. Mater. 2007, 17, 3441. https://doi.org/10.1002/adfm.200601202
  18. Grabchev, I.; Chovelon, J.-M.; Bojinov, V. Polym. Adv. Technol. 2004, 15, 382.
  19. Zou, Y.; Wan, M.; Sang, G.; Ye, M.; Li, Y. Adv. Funct. Mater. 2008, 18, 2724. https://doi.org/10.1002/adfm.200800567
  20. Guney, O.; Cebeci, F. C. J. Appl. Polym. Sci. 2010, 117, 2373. https://doi.org/10.1002/app.32077
  21. Danjou, P.-E.; Lyskawa, J.; Delattre, F.; Becuwe, M.; Woisel, P.; Ruellan, S.; Fourmentin, S.; Cazier-Dennin, F. Sens. Actuators, B 2012, 171, 1022.
  22. Lee, S. J.; Lee, S. S.; Lee, J. Y.; Jung, J. H. Chem. Mater. 2006, 18, 4713. https://doi.org/10.1021/cm061160y
  23. Lee, S. J.; Lee, S. S.; Jeong, I. Y.; Lee, J. Y.; Jung, J. H. Tetrahedron Lett. 2007, 48, 393. https://doi.org/10.1016/j.tetlet.2006.11.066
  24. Kang, Y.; Moon, S.-T.; Park, S.; Kim, J.; Lee, S. S.; Park, K.-M. Bull. Korean Chem. Soc. 2007, 28, 873. https://doi.org/10.5012/bkcs.2007.28.5.873
  25. Lee, H.; Lee, S. S. Org. Lett. 2009, 11, 1393. https://doi.org/10.1021/ol900241p
  26. Lee, Y. H.; Lee, S. S. J. Incl. Phenom. 2001, 39, 235. https://doi.org/10.1023/A:1011116404850
  27. Kim, H. J.; Song, M. R.; Lee, S. Y.; Lee, J. Y.; Lee, S. S. Eur. J. Inorg. Chem. 2008, 3532.
  28. Bruker, SMART and SAINT, Area Detector Control and Integ-ration Software version 6.22; Bruker AXS Inc.: Madison, WI, 2001.
  29. Bruker, SHELXTL-PC version 6.22: Program for Solution and Refinement of Crystal Structures; Bruker AXS Inc.: Madison, Wisconsin, U.S.A. 2008.
  30. Bruker, SADABS version 6.10: Empirical Absorption and Correction Software; Bruker AXS Inc.: Madison, Wisconsin, U.S.A. 1999.
  31. Gervat, S.; Leonel, E.; Barraud, J.-Y.; Ratovelomanana, V. Tetrahedron Lett. 1993, 34, 2115. https://doi.org/10.1016/S0040-4039(00)60359-3
  32. Yoon, S.; Albers, A. E.; Wong, A. P.; Chang, C. J. J. Am. Chem. Soc. 2005, 127, 16030. https://doi.org/10.1021/ja0557987
  33. de Groot, B.; Loeb, S. J.; Shimizu, G. K. H. Inorg. Chem. 1994, 33, 2663. https://doi.org/10.1021/ic00090a031
  34. Constable, E. C.; King, A. C.; Raithby, P. R. Polyhedron 1998, 17, 4275. https://doi.org/10.1016/S0277-5387(98)00238-1
  35. Klapars, A.; Antilla, J. C.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2001, 123, 7727. https://doi.org/10.1021/ja016226z
  36. Marion, N.; Navarro, O.; Mei, J.; Stevens, E. D.; Scott, N. M.; Nolan, S. P. J. Am. Chem. Soc. 2006, 128, 4101. https://doi.org/10.1021/ja057704z
  37. Kavarnos, G.; Cole, T.; Scribe, P.; Dalton, J. C.; Turro, N. J. J. Am. Chem. Soc. 1971, 93, 1032. https://doi.org/10.1021/ja00733a045
  38. Basu, G.; Kubasik, M.; Anglos, D.; Secor, G.; Kuki, A. J. Am. Chem. Soc. 1990, 112, 9410. https://doi.org/10.1021/ja00181a062
  39. Basu, G.; Kubasik, M.; Anglos, D.; Kuki, A. J. Phys. Chem. 1993, 97, 3956. https://doi.org/10.1021/j100118a006
  40. Lee, S. Y.; Park, S.; Kim, H. J.; Jung, J. H.; Lee, S. S. Inorg. Chem. 2008, 47, 1913. https://doi.org/10.1021/ic702496e

Cited by

  1. based on a carbazole–pyrimidine conjugate: chromogenic and fluorogenic recognition on TLC, silica-gel and filter paper vol.13, pp.26, 2015, https://doi.org/10.1039/C5OB00907C