DOI QR코드

DOI QR Code

Novel 5-Fluorouracil Derivatives: Synthesis and Cytotoxic Activity of 2-Butoxy-4-Substituted 5-Fluoropyrimidines

  • Sun, Jian (College of Chemical Engineering and Materials Science, Zhejiang University of Technology) ;
  • Zhang, Shi-Jie (Graduate School, Zhejiang Chinese Medical University) ;
  • Li, Hai-Bo (Nantong Center for Disease Control and Prevention) ;
  • Zhou, Wei (College of Pharmaceutical Science, Zhejiang University of Technology) ;
  • Hu, Wei-Xiao (College of Pharmaceutical Science, Zhejiang University of Technology) ;
  • Shan, Shang (College of Chemical Engineering and Materials Science, Zhejiang University of Technology)
  • Received : 2012.11.06
  • Accepted : 2013.02.05
  • Published : 2013.05.20

Abstract

Twenty two new 5-fluorouracil (5-FU) derivatives, 2-butoxy-4-substituted 5-fluoropyrimidines, were synthesized and characterized by IR, $^1H$ NMR, MS, HRMS. All compounds were preliminarily evaluated by MTT assay on human liver BEL-7402 cancer cell line in vitro. Ten compounds were selected to test their cytotoxic activity against A549, HL-60 and MCF-7 cancer cell lines in vitro. These compounds were more sensitive to BEL-7402 than other cell lines, particularly, cytotoxic activity of compounds 6b, 6d-f, 6p, 6s-u were in sub-micromolar scale. The highest cytotoxic potency against A549, HL-60 and MCF-7 was shown by 2-butoxy-4-chloro-5-fluoropyrimidine (5) with $IC_{50}$ values of 0.10, 1.66 and $0.59{\mu}M$, respectively. Compounds 6d and 6e were effective against MCF-7 with $IC_{50}$ $9.73{\mu}M$ and HL-60 with $IC_{50}$ $8.83{\mu}M$, respectively.

Keywords

References

  1. Duschinsky, R.; Pleven, E.; Heidelberger, C. J. Am. Chem. Soc. 1957, 79, 4559.
  2. Noordhuis, P.; Holwerda, U.; Van der Wilt, C. L.; Van Groeningen, C. J.; Smid, K.; Meijer, S.; Pinedo, H. M.; Peters, G. J. Ann. Oncol. 2004, 15, 1025. https://doi.org/10.1093/annonc/mdh264
  3. Kametani, T.; Kigasawa, K.; Hiiragi, M.; Wakisaka, K.; Nakazato, K.; Ichikawa, K.; Fukawa, K.; Irino, O.; Nishimura, N.; Okada, T. J. Med. Chem. 1982, 25, 1219. https://doi.org/10.1021/jm00352a024
  4. Tian, Z. Y.; Du, G. J.; Xie, S. Q.; Zhao, J.; Gao, W. Y.; Wang, C. J. Molecules 2007, 12, 2450. https://doi.org/10.3390/12112450
  5. Pan, X. Y.; Wang, C.; Wang, F.; Li, P. F.; Hu, Z. G.; Shan, Y. Y.; Zhang, J. Curr. Med. Chem. 2011, 18, 4538. https://doi.org/10.2174/092986711797287584
  6. Sun, Y. W.; Chen, K. M.; Kwon, C. H. Mol. Pharm. 2006, 3, 161. https://doi.org/10.1021/mp0500622
  7. Yin, P.; Hu, M. L.; Hu, L. C. J. Mol. Struct. 2008, 882, 75. https://doi.org/10.1016/j.molstruc.2007.09.017
  8. Xiong, J.; Zhu, H. F.; Zhao, Y. J.; Lan, Y. J.; Jiang, J. W.; Yang, J. J.; Zhang, S. F. Molecules 2009, 14, 3142. https://doi.org/10.3390/molecules14093142
  9. Daumar, P.; Decombat, C.; Chezal, J. M.; Debiton, E.; Madesclaire, M.; Coudert, P.; Galmier, M. J. Eur. J. Med. Chem. 2011, 46, 2867. https://doi.org/10.1016/j.ejmech.2011.04.010
  10. Wang, Q. W.; Liu, X. Y.; Liu, L.; Feng, J.; Li, Y. H.; Guo, Z. J.; Mei, Q. B. Med. Chem. Res. 2007, 16, 370. https://doi.org/10.1007/s00044-007-9049-0
  11. Zhang, Z. S.; Zhang, Q. B.; Wang, J.; Shi, X. L.; Zhang, J. J.; Song, H. F. Carbohydr. Polym. 2010, 79, 628. https://doi.org/10.1016/j.carbpol.2009.09.009
  12. Liu, J.; Kolar, C.; Lawson, T. A.; Gmeiner, W. H. J. Org. Chem. 2001, 66, 5655. https://doi.org/10.1021/jo005757n
  13. Qian, S.; Wu, J. B.; Wu, X. C.; Li, J.; Wu, Y. Arch. Pharm. 2009, 342, 513. https://doi.org/10.1002/ardp.200900075
  14. Im, J.; Biswas, G.; Kim, W.; Kim, K. T.; Chung, S. K. Bull. Korean Chem. Soc. 2011, 32, 873. https://doi.org/10.5012/bkcs.2011.32.3.873
  15. Meunier, B. Acc. Chem. Res. 2008, 41, 69. https://doi.org/10.1021/ar7000843
  16. Tsogoeva, S. B. Mini-Rev. Med. Chem. 2010, 10, 773-793. https://doi.org/10.2174/138955710791608280
  17. Liu, Y. Q.; Dai, W.; Yang, L.; Li, H. Y. Nat. Prod. Res. 2011, 25, 1817. https://doi.org/10.1080/14786411003792181
  18. Menger, F. M.; Rourk, M. J. J. Org. Chem. 1997, 62, 9083. https://doi.org/10.1021/jo971076p
  19. Wang, X. Y.; Lin, J.; Zhang, X. M.; Liu, Q.; Xu, Q.; Tan, R. X.; Guo, Z. J. J. Inorg. Biochem. 2003, 94, 186. https://doi.org/10.1016/S0162-0134(02)00618-9
  20. Chen, S. W.; Xiang, R.; Liu, J.; Tian, X. Bioorg. Med. Chem. 2009, 17, 3111. https://doi.org/10.1016/j.bmc.2009.03.009
  21. Zhou, W. M.; He, R. R.; Ye, J. T.; Zhang, N.; Liu, D. Y. Molecules 2010, 15, 2114. https://doi.org/10.3390/molecules15042114
  22. Yamashita, J.; Yamawaki, I.; Ueda, S.; Yasumoto, M.; Unemi, N.; Hashimoto, S. Chem. Pharm. Bull. 1982, 30, 4258. https://doi.org/10.1248/cpb.30.4258
  23. Benko, Z.; Boebel, T.; Breaux, N.; Bryan, K.; Davis, G.; Epp, J.; Lorsbach, B.; Martin, T.; Meyer, K.; Nader, B.; Owen, W.; Pobanz, M.; Ruiz, J.; Smith, F.; Sullenberger, M.; Webster, J.; Yao, C.; Young, D. (Dow AgroSciences). WO 2009094442. 2009 [Chem. Abstr. 2009, 151, 198448].
  24. Sun, C. J.; Wang, R. C. Pharm. Ind. 1986, 17, 10.
  25. Zhou, W.; Sun, J.; Shan, S.; Hu, W. (Zhejiang Univ Technol). CN 102659689 A. 2012 [Chem. Abstr. 2012, 157, 492731].
  26. Sun, Z.; Wang, H.; Wen, K.; Li, Y.; Fan, E. J. Org. Chem. 2011, 76, 4149. https://doi.org/10.1021/jo2003715
  27. Kheifets, G. M.; Gindin, V. A.; Studentsov, E. P. Russ. J. Org. Chem. 2006, 42, 580. https://doi.org/10.1134/S1070428006040166
  28. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Adv. Drug Delivery Rev. 2001, 46, 3. https://doi.org/10.1016/S0169-409X(00)00129-0
  29. Molinspiration Property Engine v2011.04, http://www.molinspiration.com/cgi-bin/properties, accessed on Oct. 28, 2012.

Cited by

  1. ChemInform Abstract: Novel 5-Fluorouracil Derivatives: Synthesis and Cytotoxic Activity of 2-Butoxy-4-Substituted 5-Fluoropyrimidines. vol.44, pp.40, 2013, https://doi.org/10.1002/chin.201340178
  2. Inclusion of new 5-fluorouracil amphiphilic derivatives in liposome formulation for cancer treatment vol.6, pp.9, 2015, https://doi.org/10.1039/C5MD00077G
  3. Infrared spectra of 5-fluorouracil molecules isolated in inert Ar matrices, and their films on graphene oxide at 6 K vol.43, pp.3, 2017, https://doi.org/10.1063/1.4979957
  4. Structures and infrared spectra of 5-chlorouracil molecules in the low-temperature inert Ar, Ne matrices and composite films with oxide graphene vol.44, pp.8, 2018, https://doi.org/10.1063/1.5049170
  5. Ultrasound-promoted one-pot five-components synthesis of biologically active novel bis((6-alkyl or phenyl-2-phenylpyrimidine-4-yl) oxy) alkane or methyl benzene derivatives vol.23, pp.None, 2015, https://doi.org/10.1016/j.ultsonch.2014.09.001
  6. The effect of water-mediated catalysis on the intramolecular proton-transfer reactions of the isomers of 5-chlorouracil: a theoretical study vol.75, pp.5, 2013, https://doi.org/10.1107/s2053229619004856