DOI QR코드

DOI QR Code

Synthesis of Ergosterol and 5,6-Dihydroergosterol Glycosides and Their Inhibitory Activities on Lipopolysaccharide-Induced Nitric Oxide Production

  • Park, HoonGyu (Department of Applied Chemistry, College of Applied Sciences, Kyung Hee University) ;
  • Lee, Tae Hoon (Graduate School of Biotechnology and College of Life Sciences, Skin Biotechnology Center, Kyung Hee University) ;
  • Chang, Fei (Department of Applied Chemistry, College of Applied Sciences, Kyung Hee University) ;
  • Kwon, Hyun Ji (Department of Applied Chemistry, College of Applied Sciences, Kyung Hee University) ;
  • Kim, Jiyoung (Graduate School of Biotechnology and College of Life Sciences, Skin Biotechnology Center, Kyung Hee University) ;
  • Kim, Hakwon (Department of Applied Chemistry, College of Applied Sciences, Kyung Hee University)
  • Received : 2012.12.06
  • Accepted : 2013.02.02
  • Published : 2013.05.20

Abstract

We have synthesized several glycosyl ergosterols and 5,6-dihydroergosterols (DHE) and examined their effects on production of nitric oxide (NO) and iNOS protein expression in LPS-treated RAW264.7 macrophage cells. Our results showed that DHE derivatives inhibited production of NO and iNOS protein expression more strongly than ergosterol derivative. Especially, DHE-Glc exhibited most potent inhibitory activity without cytotoxicity up to the concentration of $100{\mu}M$.

Keywords

References

  1. Wimalawansa, S. J. Expert Opin. Pharmacother. 2008, 9, 1935. https://doi.org/10.1517/14656566.9.11.1935
  2. Chersrown, S. E.; Monnier, J.; Visner, G.; Nick, H. S. Biochem. Biophysi. Res. Com. 1994, 200, 126. https://doi.org/10.1006/bbrc.1994.1424
  3. Marriot, H. M.; Ali, F.; Read, R. C.; Mitchell, T. J.; Whyte, M. K. B. FASEB J. 2004, 24, 1143.
  4. Lee, T. H.; Kwak, H. B.; Kim, H. H.; Lee, Z. H.; Chung, D. K.; Kim, J. Mol. Cells 2007, 23, 398.
  5. Hosokawa, A.; Sumino, M.; Nakamura, T.; Yano, S.; Sekine, T.; Ruangrungsi, N.; Watanabe, K.; Ikegami, F. Chem. Pharm. Bull. 2004, 52, 1265. https://doi.org/10.1248/cpb.52.1265
  6. Yao, H.; Zhou, J.; Li, D.; Wu, N.; Bader, A.; Hoxtermann, S.; Altmeyer, P.; Brockmeyer, N. H. Eur. J. Med. Res. 2005, 10, 110.
  7. Hamsa, T. P.; Kuttan, G. Inflammation 2011, 34, 171. https://doi.org/10.1007/s10753-010-9221-4
  8. Min, B. S.; Bae, K. H.; Kim, Y. H.; Miyashiro, H.; Hattori, M.; Shimotohno, K. Phytother. Res. 1999, 13, 680. https://doi.org/10.1002/(SICI)1099-1573(199912)13:8<680::AID-PTR501>3.0.CO;2-H
  9. Lee, T. H.; Lee, G. W.; Kim, C. W.; Bang, M. H.; Baek, N. I.; Kim, S. H.; Chung, D. K.; Kim, J. Phytother. Res. 2010, 24, 20. https://doi.org/10.1002/ptr.2851
  10. Lee, T. H.; Jung, M.; Bang, M. H.; Chung, D. K.; Kim, J. Int. Immunopharmacol. 2012, 13, 264. https://doi.org/10.1016/j.intimp.2012.05.005
  11. Lee, T. H.; Lee, S. M.; Lee, D. Y.; Son, Y.; Chung, D. K.; Baek, N. I.; Kim, J. Biol. Pharm. Bull. 2011, 34, 768. https://doi.org/10.1248/bpb.34.768
  12. Fieser, L. F.; Fieser, M.; Chakravarti, R. N. J. Am. Chem. Soc. 1949, 71, 2226. https://doi.org/10.1021/ja01174a085
  13. Kircher, H. W.; Rosentein, F. V. J. Org. Chem. 1973, 38, 2259. https://doi.org/10.1021/jo00952a041
  14. Anastasia, M.; Fiecchi, A.; Scala, A.; Puppo, M. del J. Chem. Soc. Perkin I 1981, 2561. https://doi.org/10.1039/p19810002561
  15. Simon Giroux, S.; Corey, E. J. Org. Lett. 2008, 10, 801. https://doi.org/10.1021/ol702936f
  16. Sara, M. S.; Leticia, Q. C.; Jesus, S. R. Tetrahedron Lett. 1995, 36, 8359. https://doi.org/10.1016/0040-4039(95)01807-T
  17. Ravasio, N.; Gargano, M. J. Org. Chem. 1993, 58, 1259. https://doi.org/10.1021/jo00057a045
  18. Hedtmann, U.; Hobert, K.; Milkova, T.; Welzel, P. Tetrahedron 1988, 44, 1941. https://doi.org/10.1016/S0040-4020(01)90337-0
  19. Barton, D. H. R.; Lusinshi, X.; Magdzinski, L.; Ramirez, J. S. J. Chem. Soc., Chem. Commun. 1984, 1236.
  20. Barton, D. H. R.; Motherwell, W. B.; Stobie, A. J. Chem. Soc., Chem. Commun. 1982, 1232.
  21. Birch, A. J.; Walker, K. A. M. J. Chem. Soc. (C) 1966, 1894.
  22. Bachmann, W. E.; Horwitz, J. P.; Warzynski, R. J. J. Org. Chem. 1953, 75, 3268.
  23. Laubach, G. D.; Brunings, K. J. J. Org. Chem. 1952, 74, 705.
  24. Heilbron, I. M.; Sexton, W. A. J. Chem. Soc. 1929, 921. https://doi.org/10.1039/jr9290000921
  25. Yasukawa, K.; Aoki, T.; Takido, M.; Ikekawa, T.; Saito, H.; Matsuzawa, T. Phytother. Res. 1994, 8, 10. https://doi.org/10.1002/ptr.2650080103
  26. Kageyama-Yahara, N.; Wang, P.; Wang, X.; Yamamoto, T.; Kadowaki, M. Biol. Pharm. Bull. 2010, 33, 142. https://doi.org/10.1248/bpb.33.142
  27. Rossard, S.; Roblin, G.; Atanassova, R. J. Exp. Bot. 2010, 61, 1807. https://doi.org/10.1093/jxb/erq047
  28. Zhang, H.; Reddy, M. S.; Phenix, S.; Deslongchamps, P. Angew. Chem. Int. Ed. 2008, 47, 1272. https://doi.org/10.1002/anie.200704959
  29. Li, C. X.; Guo, T. T.; Wang, P.; Guan, H. S.; Li, Y. X. Chin. J. Chem. 2006, 24, 917. https://doi.org/10.1002/cjoc.200690174
  30. Mbadugha, B. N. S.; Menger, F. M. Org. Lett. 2003, 5, 4041. https://doi.org/10.1021/ol030084r
  31. Ruiz, M. C. del R.; Amer, H.; Stanetty, C.; Beseda, I.; Czollner, L.; Shah, P.; Jordis, U.; Kueenburg, B.; Classen-Houben, D.; Hofinger, A.; Kosma, P. Carbohydr. Res. 2009, 344, 1063. https://doi.org/10.1016/j.carres.2009.04.015
  32. Huang, W.; Ochiai, H.; Zhang, X.; Wang, L. Carbohydr. Res. 2008, 343, 2903. https://doi.org/10.1016/j.carres.2008.08.033
  33. Tanaka, N.; Ohnishi, F.; Uchihata, D.; Torii, S.; Nokami, J. Tetrahedron Lett. 2007, 48, 7383. https://doi.org/10.1016/j.tetlet.2007.08.004
  34. Yang, J.; Cooper-Vanosdell, C.; Mensah, E. A.; Nguyen, H. M. J. Org. Chem. 2008, 73, 794. https://doi.org/10.1021/jo702436p
  35. Williams, R. J.; McGill, N. W.; White, H. M.; Williams, S. J. J. Carbohydr. Chem. 2010, 29, 236. https://doi.org/10.1080/07328303.2010.508141
  36. Chen, L.; Kong, F. Tetrahedron Lett. 2003, 44, 3691. https://doi.org/10.1016/S0040-4039(03)00673-7
  37. Crich, D.; Dai, Z.; Gastaldi, S. J. Org. Chem. 1999, 64, 5224. https://doi.org/10.1021/jo990424f
  38. Hui, Y. Z.; Yang, Z. Q.; Wang, A. P. R. C. Patent CN 101456884 (A).
  39. Seo, H. W.; Hung, T. M.; Na, M.; Jung, H. J.; Kim, J. C.; Choi, J. S.; Kim, J. H.; Lee, H. K.; Lee, I.; Bae, K.; Hattori, M.; Min, B. S. Arch. Pharmacal Res. 2009, 32, 1573. https://doi.org/10.1007/s12272-009-2109-x
  40. Barrero, A. F.; Oltra, J. E.; Poyatos, J. A.; Jimnez, D.; Oliver, E. J. Nat. Prod. 1998, 61, 1491. https://doi.org/10.1021/np980199h
  41. Zhu, Z. Y.; Yao, Q.; Liu, Y.; Si, C. L.; Chen, J.; Liu, N.; Lian, H. Y.; Ding, L. N.; Zhang, Y. M. J. Asian Nat. Prod. Res. 2012, 14, 429. https://doi.org/10.1080/10286020.2012.670220

Cited by

  1. Comparison of the Inhibitory Activities of 5,6-Dihydroergosterol Glycoside α- and β-Anomers on Skin Inflammation vol.24, pp.2, 2019, https://doi.org/10.3390/molecules24020371
  2. Comparative Study of the Effect of 5,6-Dihydroergosterol and 3- epi -5,6-dihydroergosterol on Chemokine Expression in Human Keratinocytes vol.25, pp.3, 2013, https://doi.org/10.3390/molecules25030522
  3. 신령버섯에서 분리된 Glucosylceramide 및 Sterol의 피부 세포 개선 효과 vol.46, pp.2, 2013, https://doi.org/10.15230/scsk.2020.46.2.105
  4. Δ8(14)-Ergostenol Glycoside Derivatives Inhibit the Expression of Inflammatory Mediators and Matrix Metalloproteinase vol.26, pp.15, 2013, https://doi.org/10.3390/molecules26154547