DOI QR코드

DOI QR Code

Characterization and Release Behavior of Polymersomes of PEG-Poly(fumaric-sebacic acids)-PEG Triblock Copolymer in Aqueous Solution

PEG-Poly(fumaric-sebacic acids)-PEG 삼중 블록 공중합체로 수용액에서 만들어진 폴리머솜의 분석과 방출특성

  • Pourhosseini, Pouneh S. (Department of Biology, Faculty of Science, Buali-Sina University) ;
  • Saboury, Ali A. (Institute of Biochemistry and Biophysics, University of Tehran) ;
  • Najafi, Farhood (Department of Resin and Additives, Institute for Color Science and Technology) ;
  • Divsalar, Adeleh (Department of Biological Sciences, Tarbiat Moallem University) ;
  • Sarbolouki, Mohammad N. (Institute of Biochemistry and Biophysics, University of Tehran)
  • Received : 2012.09.20
  • Accepted : 2012.12.06
  • Published : 2013.05.25

Abstract

Polymersomes made of biodegradable triblock copolymers based on poly(fumaric acid-co-sebacoyl chloride)/PEG (PEG-co-P(FA/SC)-co-PEG) were prepared and studied in aqueous solutions. TEM confirmed the formation of vesicles in aqueous media. Aggregation behavior of the copolymers was studied by fluorescence spectroscopy of 8-anilino-1-naphthalenesulfonic acid, and the critical aggregation concentration (c.a.c.) of the copolymer was found to be ${\sim}26.2{\mu}M$ indicating desirable stability of the vesicles. Dynamic light scattering revealed that the size of the vesicles was distributed within the range of 170-270 nm. Turbidity measurements confirmed the relative short-term stability of the polymersomes. Carboxyfluorescein, a hydrophilic compound, was simply encapsulated in the vesicles during polymersome preparation. The release of encapsulant from the polymersomes at 25 and $37^{\circ}C$ lasted about 3 weeks, and the rate of release followed a first-order kinetics. The release is speculated to be primarily carried out through diffusion. These results confirm that these polymersomes are promising as controlled-release carriers of various drugs.

Keywords

References

  1. P. Bahadur, Curr. Sci., 80, 1002 (2001).
  2. R. Gref, Y. Minamitake, M. T. Peracchia, V. Trubetskoy, V. Torchilin, and R. Langer, Science, 263, 1600 (1994). https://doi.org/10.1126/science.8128245
  3. K. Kita-Tokarczyk, J. Grumelard, T. Haefele, and W. Meier, Polymer, 46, 3540 (2005). https://doi.org/10.1016/j.polymer.2005.02.083
  4. T. Liu, K. Kim, B. S. Hsiao, and B. Chu, Polymer, 45, 7989 (2004). https://doi.org/10.1016/j.polymer.2004.08.074
  5. T. Liu, Z. Zhou, C. Wu, V. M. Nace, and B. Chu, J. Phys. Chem. B, 102, 2875 (1998). https://doi.org/10.1021/jp980139k
  6. P. Dimitrov, S. Rangelov, A. Dworak, and C. B. Tsvetanov, Macomolecules, 37, 1000 (2004). https://doi.org/10.1021/ma0354039
  7. F. Checot, S. Lecommandoux, H.-A. Klok, and Y. Gnanou, Eur. Phys. J. E: Soft Matter Biol. Phys., 10, 25 (2003). https://doi.org/10.1140/epje/e2003-00006-1
  8. Z. Zhang, G. Y. Xu, F. Wang, S. L. Gong, and Y. M. Li, J. Colloid Interface Sci., 277, 464 (2004). https://doi.org/10.1016/j.jcis.2004.04.035
  9. Y. Geng and D. E. Discher, Polymer, 47, 2519 (2006). https://doi.org/10.1016/j.polymer.2005.11.093
  10. Y. H. Kim, J. H. Im, H. S. Min, J. Kim, Y. K. Lee, G. E. Park, K. J. Cho, and K. M. Huh, Polymer(Korea), 34, 274 (2010).
  11. J. Lee, E. C. Cho, and K. Cho, J. Control. Release, 94, 323 (2004). https://doi.org/10.1016/j.jconrel.2003.10.012
  12. J.-P. Xu, J. Ji, W.-D. Chen, and J.-C. Shen, J. Control. Release, 107, 502 (2005). https://doi.org/10.1016/j.jconrel.2005.06.013
  13. J. Yuan, Y. Luo, and Q. Gao, J. Microencapsulation, 28, 93 (2011). https://doi.org/10.3109/02652048.2010.534823
  14. J. Du and S. P. Armes, Langmuir, 25, 9564 (2009). https://doi.org/10.1021/la900834z
  15. J. Li, X. Ni, X. Li, N. K. Tan, C. T. Lim, S. Ramakrishna, and K. W. Leong, Langmuir, 21, 8681 (2005). https://doi.org/10.1021/la0515266
  16. P. Petrov, M. Bozukov, and C. B. Tsvetanov, J. Mater. Chem., 15, 1481 (2005). https://doi.org/10.1039/b417563h
  17. A. Graff, M. Sauer, P. V. Gelder, and W. Meier, Proc. Natl. Acad. Sci. U. S. A., 99, 5064 (2002). https://doi.org/10.1073/pnas.062654499
  18. K. Schillen, K. Bryskhe, and Y. S. Menikova, Macromolecules, 32, 6885 (1999). https://doi.org/10.1021/ma9908144
  19. C. de las Heras Alarcón, S. Pennadam, and C. Alexander, Chem. Soc. Rev., 34, 276 (2005). https://doi.org/10.1039/b406727d
  20. Y. J. Kim, S. Choi, J. J. Koh, M. Lee, K. S. Ko, and S. W. Kim, Pharm. Res., 18, 548 (2001). https://doi.org/10.1023/A:1011074915438
  21. Y. M. Kwon and S. W. Kim, Pharm. Res., 21, 339 (2004). https://doi.org/10.1023/B:PHAM.0000016248.30579.2f
  22. B. Wang, W. Zhu, Y. Zhang, Z. Yang, and J. Ding, React. Funct. Polym., 66, 509 (2006). https://doi.org/10.1016/j.reactfunctpolym.2005.10.003
  23. G. M. Zentner, R. Rathi, C. Shih, J. C. McRea, M.-H. Seo, H. Oh, B. G. Rhee, J. Mestecky, Z. Moldoveanu, M. Morgan, and S. Weitman, J. Control. Release, 72, 203 (2001). https://doi.org/10.1016/S0168-3659(01)00276-0
  24. E. J. Baek, B. K. Shin, Y. C. Nho, Y. M. Lim, J. S. Park, J. S. Park, and K. M. Huh, Polymer(Korea), 36, 182 (2012).
  25. D. E. Discher and A. Eisenberg, Science, 297, 967 (2002). https://doi.org/10.1126/science.1074972
  26. X. Q. Zhang, J. Intra, and A. K. Salem, J. Microencapsulation, 25, 1 (2008). https://doi.org/10.1080/02652040701659347
  27. F. Ahmed and D. E. Discher, J. Control. Release, 96, 37 (2004). https://doi.org/10.1016/j.jconrel.2003.12.021
  28. P. P. Ghoroghchian, P. R. Frail, K. Susumu, D. Blessington, A. K. Brannan, F. S. Bates, B. Chance, D. A. Hammer, and M. Therien, Proc. Natl. Acad. Sci. U. S. A., 102, 2922 (2005). https://doi.org/10.1073/pnas.0409394102
  29. P. J. Photos, L. Bacakova, B. Discher, F. S. Bates, and D. E. Discher, J. Control. Release, 90, 323 (2003). https://doi.org/10.1016/S0168-3659(03)00201-3
  30. C. Sanson, C. Schatz, J. -F. Le Meins, A. Brulet, A. Soum, and S. Lecommandoux, Langmuir, 26, 2751 (2010). https://doi.org/10.1021/la902786t
  31. J. H. Park, M. Ye, and K. Park, Molecules, 10, 146 (2005). https://doi.org/10.3390/10010146
  32. C. Y. Gong, S. Z. Fu, Y. C. Gu, C. B. Liu, B. Kan, H. X. Deng, F. Luo, and Z. Y. Qian, J. Appl. Polym. Sci., 113, 1111 (2009). https://doi.org/10.1002/app.29946
  33. Y. Zhang, W. Zhu, B. Wang, and J. Ding, J. Control. Release, 105, 260 (2005). https://doi.org/10.1016/j.jconrel.2005.04.001
  34. S. Eom, S. C. Yoo, Y. K. Kim, Y. H. Lee, E. Y. Lee, H. Yu, D. Lee, and G. Khang, Polymer(Korea), 34, 333 (2010).
  35. G. N. Lim, S. Y. Kim, M. J. Kim, and S. N. Park, Polymer(Korea), 36, 420 (2012).
  36. M. Bikram, M. Lee, C.-W. Chang, M.-M. Janát-Amsbury, S. E. Kern, and S. W. Kim, J. Control. Release, 103, 221 (2005). https://doi.org/10.1016/j.jconrel.2004.11.011
  37. K. Y. Yuk, Y. T. Kim, S. J. Im, J. Garner, Y. Fu, K. Park, J. S. Park, and K. M. Huh, Polymer(Korea), 34, 253 (2010).
  38. P. S. Pourhosseini, A. A. Saboury, F. Najafi, and M. N. Sarbolouki, Biochim. Biophys. Acta, Proteins Proteomics, 1774, 1274 (2007). https://doi.org/10.1016/j.bbapap.2007.08.007
  39. F. Najafi and M. N. Sarbolouki, Biomaterials, 24, 1175 (2003). https://doi.org/10.1016/S0142-9612(02)00487-8
  40. J. Sambrook, E. F. Fritsch, and T. Maniatis, Molecular Cloning, A Laboratory Manual, 2nd edition, CSH Cold Spring Harbor Laboratory Press, New York, 1989.
  41. F. Meng, G. H. M. Engbers, and J. Feijen, J. Control. Release, 101, 187 (2005). https://doi.org/10.1016/j.jconrel.2004.09.026
  42. S. Bhattacharya and S. Halder, Biochim. Biophys. Acta, 1467, 39 (2000). https://doi.org/10.1016/S0005-2736(00)00196-6
  43. J. S. Katz, D. H. Levine, K. P. Davis, F. S. Bates, D. A. Hammer, and J. A. Burdick, Langmuir, 25, 4429 (2009). https://doi.org/10.1021/la803769q
  44. J. J. Bozzola and L. D. Russell, Electron Microscopy, Principles and Techniques for Biologists, Jones and Bartlett Publishers, Boston, 1992.
  45. R. H. Haschemeyer and R. J. Myers, "Negative Staining", in Principles and Techniques of Electron Microscopy, Biological Applications, M. A. Hayat, Editor, VNR Van Nostrand Reinhold Company, New York, Cincinnati, Toronto, London, Melbourne, Vol 2, p 101 (1972).
  46. F. Meng, C. Hiemstra, G. H. M. Engbers, and J. Feijen, Macromolecules, 36, 3004 (2003). https://doi.org/10.1021/ma034040+
  47. M. Wilhelm, C.-L. Zhao, Y. Wang, R. Xu, M. A. Winnik, J.-L. Mura, G. Riess, and M. D. Croucher, Macromolecules, 24, 1033 (1991). https://doi.org/10.1021/ma00005a010
  48. M. Ikemi, N. Odagiri, S. Tanaka, I. Shinohara, and A. Chiba, Macromolecules, 14, 34 (1981). https://doi.org/10.1021/ma50002a005
  49. M. Ikemi, N. Odagiri, S. Tanaka, I. Shinohara, and A. Chiba, Macromolecules, 15, 281 (1982). https://doi.org/10.1021/ma00230a016
  50. I. Astafieva, X. F. Zhong, and A. Eisenberg, Macromolecules, 26, 7339 (1993). https://doi.org/10.1021/ma00078a034
  51. N. Duzgune, "Fluorescence Assays for Liposome Fusion", in Methods in Enzymology, J. N. Abelson and M. I. Simon, Editorsin-Chief, Academic Press, San Diego, New York, Boston, London, Sydney, Tokyo, Toronto, Vol 372, p 272 (2003).
  52. J. N. Weinstein, S. Yoshikami, P. Henkart, R. Blumenthal, and W. A. Hagins, Science, 195, 489 (1977). https://doi.org/10.1126/science.835007
  53. G. De Rosa, R. Iommelli, M. I. La Rotonda, A. Miro, and F. Quaglia, J. Control. Release, 69, 283 (2000). https://doi.org/10.1016/S0168-3659(00)00315-1
  54. S. Dash, P. N. Murthy, L. Nath, and P. Chowdhury, Acta Pol. Pharm., 67, 217 (2010).
  55. S. A. Bravo, M. C. Lamas, and C. J. Salomon, J. Pharm. Pharm. Sci., 5, 213 (2002).

Cited by

  1. A Review on Polymer/Cement Composite with Carbon Nanofiller and Inorganic Filler vol.55, pp.12, 2016, https://doi.org/10.1080/03602559.2016.1163594