DOI QR코드

DOI QR Code

Thermotropic Liquid Crystalline Behavior of Aliphatic Acid Esters of N,O-Hydroxypropyl Chitosans

N,O-히드록시프로필 키토산 지방산 에스터들의 열방성 액정 거동

  • Kim, Hyo Gap (Center for Photofunctional Energy Materials, Dankook University) ;
  • Jung, Seung Yong (Center for Photofunctional Energy Materials, Dankook University) ;
  • Ma, Yung Dae (Center for Photofunctional Energy Materials, Dankook University)
  • 김효갑 (단국대학교 광 에너지 연구센터) ;
  • 정승용 (단국대학교 광 에너지 연구센터) ;
  • 마영대 (단국대학교 광 에너지 연구센터)
  • Received : 2012.08.24
  • Accepted : 2012.10.23
  • Published : 2013.05.25

Abstract

Two kinds of N,O-hydroxypropyl chitosans (HPCTOs) with degree of substitution (DS) and molar substitution (MS) ranging from 2.15 to 2.39 and 2.9 to 4.1, respectively, and five kinds of aliphatic acid esters of HPCTOs (HPCTOAms, m=0,2,4,7,9, the number of methylene units in aliphatic substituent) based on the HPCTOs were synthesized, and the thermotropic liquid crystalline properties of the derivatives were investigated. All the derivatives formed enantiotropic cholesteric phases whose optical pitches (${\lambda}_m$'s) increased with increasing temperature. However, the glass and clearing temperatures, the magnitude of ${\lambda}_m$ of the mesophase at the same temperature, and the temperature dependence of ${\lambda}_m$ of the investigated derivatives highly depended on MS and m. The thermotropic mesophase properties of HPCTOAms were significantly different from those reported for the aliphatic acid esters of hydroxypropyl celluloses. The results indicate that the secondary amino group in the C-2 position plays an important role in the thermal stabilization and temperature dependence of ${\lambda}_m$ of the cholesteric mesophase.

치환도(DS) 그리고 몰치환도(MS)가 각각 2.15~2.39 그리고 2.9~4.1 범위에 있는 2종류의 N,O-히드록시프로필 키토산들(HPCTOs) 그리고 HPCTO들을 이용하여 5 종류의 HPCTOs의 지방산 에스터들(HPCTOAms, m=0,2,4,7,9, 지방족 치환기 중의 메틸렌 단위들의 수)을 합성함과 동시에 이들의 열방성 액정 특성들을 검토하였다. 모든 유도체들은 온도 상승에 의해 광학피치들(${\lambda}_m$'s)이 증가하는 양방성 콜레스테릭 상들을 형성하였다. 그러나 검토한 유도체들의 유리 그리고 액정 상에서 액체 상으로의 전이온도들, 동일한 온도에서 액정 상이 나타내는 ${\lambda}_m$의 크기, 그리고 ${\lambda}_m$의 온도의존성은 MS와 m에 크게 의존하였다. HPCTOAm들의 열방성 액정 특성들은 히드록시프로필 셀룰로오스들의 지방산 에스터들에 대해 보고된 결과들에 비해 현저히 달랐다. 이러한 결과들은 C-2 위치에 존재하는 2차 아미노기가 콜레스테릭 상의 열적 안정성과 ${\lambda}_m$의 온도의존성에 중요한 역할을 함을 시사한다.

Keywords

Acknowledgement

Supported by : 경기도 지역협력센터

References

  1. N. Katsonis, E. Lacaze, and A. Ferrarini, J. Mater. Chem., 22, 7088 (2012). https://doi.org/10.1039/c2jm15962g
  2. M. Muller and R. Zentel, Macromol. Chem. Phys., 201, 2055 (2000). https://doi.org/10.1002/1521-3935(20001001)201:15<2055::AID-MACP2055>3.0.CO;2-P
  3. V. Shibaev, A. Borovsky, and N. Boiko, Prog. Polym. Sci., 28, 729 (2003). https://doi.org/10.1016/S0079-6700(02)00086-2
  4. S. Kurihara, "Phototunning of Helical Structure of Cholesteric Liquid Crystals", in Smart Light-Responsive Materials: Azobenzene-Containing Polymers and Liquid Crystals, Y. Zhao and T. Ikeda, Editors, Wiley Interscience, Chap 10, p 329 (2009).
  5. S. Furumi and N. Tamaoki, Adv. Mater., 22, 886 (2010). https://doi.org/10.1002/adma.200902552
  6. W. Hu, H. Zhao, L. Song, Z. Yang, H. Cao, Z. Cheng, Q. Liu, and H. Yang, Adv. Mater., 22, 468 (2010). https://doi.org/10.1002/adma.200902213
  7. P. Zugenmair, "Cellulose Liquid Crystals", in Handbook of Liquid Crystals, D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill, Editors, Wiley-VCH, Weinheim-New York, Vol 3, Chap IX, p 453 (1998).
  8. H. Hou, A. Reuning, J. H. Wendorff, and A. Greiner, Macromol. Chem. Phys., 201, 2050 (2000). https://doi.org/10.1002/1521-3935(20001001)201:15<2050::AID-MACP2050>3.0.CO;2-I
  9. E. Arici, A. Greiner, H. Hou, A. Reuning, and J. H. Wendorff, Macrommol. Chem. Phys., 201, 2083 (2000). https://doi.org/10.1002/1521-3935(20001001)201:15<2083::AID-MACP2083>3.0.CO;2-V
  10. B. Huang, J. J. Ge, Y. Li, and H. Hou, Polymer, 48, 264 (2007). https://doi.org/10.1016/j.polymer.2006.11.033
  11. S.-Y. Jeong and Y.-D. Ma, Polymer(Korea), 33, 254 (2009).
  12. H.-G. Kim, S.-Y. Jeong, and Y.-D. Ma, Polymer(Korea), 36, 380 (2012).
  13. J. Rusig, M. H. Godinho, L. Varichon, P. Sixou, J. Denier, C. Filliatre, and A. F. Martins, J. Polym. Sci. Part B: Polym. Phys., 32, 1907 (1994). https://doi.org/10.1002/polb.1994.090321108
  14. T. A. Yamagishi, F. Guittard, M. H. Godinho, A. F. Martins, A. Cambon, and P. Sixou, Polym. Bull., 32, 47 (1994). https://doi.org/10.1007/BF00297413
  15. T. A. Yamagishi and P. Sixou, Polymer, 36, 2315 (1995). https://doi.org/10.1016/0032-3861(95)95313-P
  16. F. Guittard, T. Yamagishi, A. Cambon, and P. Sixou, Macromolecules, 27, 6988 (1994). https://doi.org/10.1021/ma00101a042
  17. S.-Y. Jeong, J.-H. Jeong, Y.-D. Ma, and Y. Tsujii, Polymer(Korea), 25, 279 (2001).
  18. V. P. Shibaev, "Combed-Shaped Liquid-Crystal Polymers", in Liquid-Crystal Polymers, N. A. Plate, Editor, Plenum Press, New York, Chap 6, p 193 (1993).
  19. R. Zentel, "Combined Liquid Crystalline Main-Chain/Side-Chain Polymers", in Handbook of Liquid Crystals, D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill, Editors, Wiley-VCH, Weinheim-New York, Vol 3, Chap 3, p 52 (1998).
  20. K. Ogura, T. Kanamoto, T. Sannan, K. Tanaka, and Y. Iwakura, "Liquid Crystal Phases Based on Chitosan and Its Derivatives", in Chitin and Chitosan, Proc. Int. Conference on Chitin and Chitosan, Japan, p 39 (1982).
  21. L. Wang and Y. Huang, Macromolecules, 37, 303 (2004). https://doi.org/10.1021/ma0344893
  22. Y.-D. Ma and K.-H. Kim, Polymer(Korea), 24, 418 (2000).
  23. H.-G. Kim, S.-Y. Jeong, S.-Y. Yang, and Y.-D. Ma, Polymer(Korea), 36, 76 (2012).
  24. M. Sugiura, M. Minoda, T. Fukuda, T. Miyamoto, and J. Watanabe, Bull. Chem. Soc. Jpn., 65, 1939 (1992). https://doi.org/10.1246/bcsj.65.1939
  25. K. Kimura, T. Shigemura, M. Kubo, and Y. Maru, Macromol. Chem., 186, 61 (1985). https://doi.org/10.1002/macp.1985.021860107
  26. S. Tokura, J. Yoshida, N. Nishi, and T. Hiraoki, Polym. J., 14, 527 (1982). https://doi.org/10.1295/polymj.14.527
  27. T. Fukuda, Y. Tsujii, and T. Miyamoto, Macromol. Symp., 99, 257 (1995). https://doi.org/10.1002/masy.19950990127
  28. S. Chandrasekhar, "Cholesteric Liquid Crystals", in Liquid Crystals, Cambridge University Press, Cambridge, Chap 4, p 213 (1992).
  29. R. Nirmala, B. W. Il, R. Navamathavan, M. H. El-Newehy, and H. Y. Kim, Macromol. Res., 19, 345 (2011). https://doi.org/10.1007/s13233-011-0402-2
  30. V. A. Rana, A. K. Pandey, R. P. Singh, B. Kumar, S. Mishra, and C.-S. Ha, Macromol. Res., 18, 713 (2010). https://doi.org/10.1007/s13233-010-0801-9
  31. T. Huang, J. Appl. Polym. Sci., 51, 1979 (1994). https://doi.org/10.1002/app.1994.070511114
  32. W. P. Pawlowski and R. D. Gilbert, J. Polym. Sci. Part B: Polym. Phys., 25, 2293 (1987). https://doi.org/10.1002/polb.1987.090251107
  33. T. Yamagishi, Ph. D. Dissertation, Kyoto University (1989).
  34. V. P. Shibaev, Ya. S. Freidzon, and G. S. Kostromin, "Molecular Architecture and Structure of Thermotropic Liquid Crystal Polymers with Mesogenic Side Groups", in Liquid Crstalline and Mesomorphic Polymers, V. P. Shibaev and L. Lam, Editors, Springer-Verlag, New York, Chap 3, p 77 (1994).
  35. J. Watanabe, M. Goto, and T. Nagase, Macromolecules, 20, 298 (1987). https://doi.org/10.1021/ma00168a011
  36. J. Watanabe and T. Nagase, Macromolecules, 21, 171 (1988). https://doi.org/10.1021/ma00179a034
  37. G. V. Levins and P. Sixou, J. Polym. Sci. Part B: Polym. Phys., 24, 2779 (1986). https://doi.org/10.1002/polb.1986.090241213
  38. V. P. Shibayev and I. V. Yekayeva, Vyscomol. Soyed., A39, 2647 (1987).