DOI QR코드

DOI QR Code

Preparation and Characterization of Palladium Nanoparticles Supported on Nickel Hexacyanoferrate for Fuel Cell Application

  • Choi, Kwang-Hyun (School of Chemical and Biological Engineering, World Class University Program of Chemical Convergence for Energy and Environment, Seoul National University) ;
  • Shokouhimehr, Mohammadreza (School of Chemical and Biological Engineering, World Class University Program of Chemical Convergence for Energy and Environment, Seoul National University) ;
  • Kang, Yun Sik (School of Chemical and Biological Engineering, World Class University Program of Chemical Convergence for Energy and Environment, Seoul National University) ;
  • Chung, Dong Young (School of Chemical and Biological Engineering, World Class University Program of Chemical Convergence for Energy and Environment, Seoul National University) ;
  • Chung, Young-Hoon (School of Chemical and Biological Engineering, World Class University Program of Chemical Convergence for Energy and Environment, Seoul National University) ;
  • Ahn, Minjeh (School of Chemical and Biological Engineering, World Class University Program of Chemical Convergence for Energy and Environment, Seoul National University) ;
  • Sung, Yung-Eun (School of Chemical and Biological Engineering, World Class University Program of Chemical Convergence for Energy and Environment, Seoul National University)
  • Received : 2012.11.07
  • Accepted : 2013.01.26
  • Published : 2013.04.20

Abstract

Nickel hexacyanoferrate supported palladium nanoparticles (Pd-NiHCF NPs) were synthesized and studied for oxygen reduction reactions in direct methanol fuel cell. The NiHCF support was readily synthesized by a comixing of $Ni(OCOCH_3)_2$ and equimolar $K_3[Fe(CN)_6]$ solution into DI water under rigorous stirring. After the preparation of NiHCF support, Pd NPs were loaded on NiHCF via L-ascorbic acid reduction method at $80^{\circ}C$. Pd-NiHCF NPs were electrochemically active for oxygen reduction reaction in 0.1 M $HClO_4$ solution. X-ray absorption near edge structure analysis was conducted to measure the white line intensity of Pd-NiHCF to verify the OH adsorption. As a comparison, carbon supported Pd NPs exhibited same white line intensity. This study provides a general synthetic approach to easily load Pd NPs on porous coordination polymers such as NiHCF and can provide further light to load Pd based alloy NPs on NiHCF framework.

Keywords

References

  1. Okada, T.; Kaneko, M. Molecular Catalysts for Energy Conversion, Springer 2008.
  2. Serov, A. A.; Kwak, C. Catal. Commun. 2009, 10, 1551. https://doi.org/10.1016/j.catcom.2009.04.015
  3. Stolten, D.; Emonts, B. Fuel Cell Science and Engineering: Materials, Processes, Systems and Technology, Wiley-VCH: 2012.
  4. Wang, M.-X.; Xu, F.; Sun, H.-F.; Liu, Q.; Artyushkova, K.; Stach, E. A. Electrochim. Acta 2011, 56, 2566. https://doi.org/10.1016/j.electacta.2010.11.019
  5. Wang, C.; Luo, L.; Wu, Y.; Hou, B.; Sun, L. Mater. Lett. 2011, 65, 2251. https://doi.org/10.1016/j.matlet.2011.04.077
  6. Jung, N.; Cho, Y.-H.; Choi, K.-H.; Lim, J. W.; Cho, Y.-H.; Ahn, M. Electrochem. Commun. 2010, 12, 754. https://doi.org/10.1016/j.elecom.2010.03.025
  7. Wang, Y.-J.; Wilkinson, D. P.; Zhang, J. Chem. Rev. 2011, 111, 7625. https://doi.org/10.1021/cr100060r
  8. Wiechowski, A.; Koper, M. Fuel Cell Catalysis: A Surface Science Approach, Wiley: 2009.
  9. Murray, L. J.; Dinca, M.; Long, J. R. Chem. Soc. Rev. 2009, 38, 1294. https://doi.org/10.1039/b802256a
  10. Yoon, M.; Srirambalaji, R.; Kim, K. Chem. Rev. 2012, 112, 1196. https://doi.org/10.1021/cr2003147
  11. Yang, L.; Kinoshita, S.; Yamada, T.; Kanda, S.; Kitagawa, H. Angew. Chem. Int. Ed. 2010, 49, 5348. https://doi.org/10.1002/anie.201000863
  12. Buser, H. J.; Schwarzenbach, D.; Petter, W.; Ludi, A. Inorg. Chem. 1977, 16, 2704. https://doi.org/10.1021/ic50177a008
  13. Gispert, J. R. Coordination Chemistry, Wiley-VCH: 2008.
  14. Leong, W. L.; Vittal, J. J. Chem. Rev. 2011, 111, 688. https://doi.org/10.1021/cr100160e
  15. Gao, S.; Zhao, N.; Shu, M.; Che, S. Appl. Catal. A. 2010, 388, 196. https://doi.org/10.1016/j.apcata.2010.08.045
  16. Uemura, T.; Kitagawa, S. J. Am. Chem. Soc. 2003, 125, 7814. https://doi.org/10.1021/ja0356582
  17. MacGillivray, L. R. Metal-Organic Frameworks: Design and Application, Wiley: 2010.
  18. Larionova, J.; Guari, Y.; Sangregorio, C.; Guerin, C. New. J. Chem. 2009, 33, 1177. https://doi.org/10.1039/b900918c
  19. Jeon, T.-Y.; Yoo, S. J.; Park, H.-Y.; Kim, S.-K.; Lim, S.; Peck, D. Langmuir 2012, 28, 3664. https://doi.org/10.1021/la2042668
  20. Zhou, W.-P.; Sasaki, K.; Su, D.; Zhu, Y.; Wang, J. X.; Adzic, R. R. J. Phys. Chem. C 2010, 114, 8950. https://doi.org/10.1021/jp100283p
  21. Savadogo, O.; Lee, K.; Oishi, K.; Mitsushima, S.; Kamiya, N.; Ota, K.-I. Electrochem. Commun. 2004, 6, 105. https://doi.org/10.1016/j.elecom.2003.10.020
  22. Raghuveer, V.; Manthiram, A.; Bard, A. J. J. Phys. Chem. B 2005, 109, 22909. https://doi.org/10.1021/jp054815b

Cited by

  1. ChemInform Abstract: Preparation and Characterization of Palladium Nanoparticles Supported on Nickel Hexacyanoferrate for Fuel Cell Application. vol.44, pp.32, 2013, https://doi.org/10.1002/chin.201332020
  2. Modulated large-pore mesoporous silica as an efficient base catalyst for the Henry reaction pp.1568-5675, 2018, https://doi.org/10.1007/s11164-017-3188-9
  3. Copper oxide–graphene oxide nanocomposite: efficient catalyst for hydrogenation of nitroaromatics in water vol.6, pp.1, 2019, https://doi.org/10.1186/s40580-019-0176-3
  4. Palladium nanoparticle anchored polyphosphazene nanotubes: preparation and catalytic activity on aryl coupling reactions vol.38, pp.3, 2013, https://doi.org/10.1007/s12034-015-0923-y
  5. Recent Advances in the Nanocatalyst-Assisted NaBH4 Reduction of Nitroaromatics in Water vol.4, pp.1, 2013, https://doi.org/10.1021/acsomega.8b03051
  6. Palladium Nanocatalysts on Hydroxyapatite: Green Oxidation of Alcohols and Reduction of Nitroarenes in Water vol.9, pp.19, 2013, https://doi.org/10.3390/app9194183
  7. Palladium Nanoparticles on Assorted Nanostructured Supports: Applications for Suzuki, Heck, and Sonogashira Cross-Coupling Reactions vol.3, pp.3, 2013, https://doi.org/10.1021/acsanm.9b02017