DOI QR코드

DOI QR Code

Overexpression and Biological Characterization of the Death Domain Complex between TRADD and FADD

  • Hwang, Eun Young (Department of Molecular Biology, College of Natural Sciences, Pusan National University) ;
  • Jeong, Mi Suk (Department of Molecular Biology, College of Natural Sciences, Pusan National University) ;
  • Sung, Minkyung (Department of Molecular Biology, College of Natural Sciences, Pusan National University) ;
  • Jang, Se Bok (Department of Molecular Biology, College of Natural Sciences, Pusan National University)
  • Received : 2012.11.15
  • Accepted : 2013.01.14
  • Published : 2013.04.20

Abstract

The tumor necrosis factor-receptor 1 (TNFR1)-associated death domain protein (TRADD) contains an N-terminal TRAF binding domain and a C-terminal death domain. TRADD is known to interact directly with TNF receptor 2 (TNFR2) and the Fas-associated death domain protein (FADD), which are signal transducers that activate NF-${\kappa}B$ and induce apoptosis, respectively. To date, there has been no structural information on the TRADD and FADD death domain (DDs) complex. In this study, the death domains of TRADD and FADD were co-expressed and purified from Escherichia coli for structural characterization. We found that human TRADD (hTRADD) interacted strongly with mouse FADD (mFADD) via their DDs and interacted weakly with human FADD (hFADD)-DD. Moreover, the structures of the TRADD-DD:FADD-DD complexes were separately modeled from predicted structures in the protein data bank (PDB). The results of this study will have important applications in human diseases such as cancer, AIDS, degenerative and autoimmune diseases, and infectious diseases.

Keywords

References

  1. Hsu, H.; Shu, H. B.; Pan, M. G.; Goeddel, D. V. Cell 1996, 84,299. https://doi.org/10.1016/S0092-8674(00)80984-8
  2. Reed, J. C.; Doctor, K. S.; Godzik, A. Sci. STKE 2004, 239:re9.
  3. Stanger, B. Z.; Leder, P.; Lee, T. H.; Kim, E.; Seed, B. Cell 1995, 81, 513. https://doi.org/10.1016/0092-8674(95)90072-1
  4. Song, H. Y.; Dunbar, J. D.; Donner, D. B. J. Biol. Chem. 1994, 269, 22492.
  5. Boldin, M. P.; Mett, I. L.; Varfolomeev, E. E.; Chumakov, I.; Shemer-Avni, Y.; Camonis, J. H.; Wallach, D. J. Biol. Chem. 1995, 270, 387. https://doi.org/10.1074/jbc.270.1.387
  6. Hsu, H.; Xiong, J.; Goeddel, D. V. Cell 1995, 81, 495. https://doi.org/10.1016/0092-8674(95)90070-5
  7. Chinnaiyan, A. M.; Rourke, K. O.; Tewari, M.; Dixit, V. M. Cell 1995, 81, 505. https://doi.org/10.1016/0092-8674(95)90071-3
  8. Guan, Y. J.; Zhang, Z.; Yu, C.; Ma, L.; Hu, W.; Xu, L.; Gao, J. S.; Chung, C. S.; Wang, L.; Yang, Z. F.; Fast, L. D.; Chung, A. S.; Kim, M.; Ayala, A.; Zhuang, S.; Zheng, S.; Chin, Y. E. J. Immunology 2011, 187, 1289. https://doi.org/10.4049/jimmunol.1003399
  9. Guex, N.; Peitsch, M. C. Electrophoresis 1997, 18, 2714. https://doi.org/10.1002/elps.1150181505
  10. La skowski, R. A. J. Appl. Cryst. 1993, 26, 283. https://doi.org/10.1107/S0021889892009944
  11. Lin, S. C.; Lo, Y. C.; Wu, H. Nature 2010, 465, 885. https://doi.org/10.1038/nature09121
  12. Park, H. H. Apoptosis 2011, 16, 209. https://doi.org/10.1007/s10495-010-0571-z
  13. Ferrao, R.; Wu, H. Curr. Opin. Struct. Biol. 2012, 22, 241. https://doi.org/10.1016/j.sbi.2012.02.006