DOI QR코드

DOI QR Code

전송선의 크로스토크를 이용한 물리적복제방지기능(PUF) 구현

Implementation of Physical Unclonable Function(PUF) using Transmission Line Crosstalks

  • 이관희 (충북대학교 전자정보대학) ;
  • 김승열 (충북대학교 전자정보대학) ;
  • 조경록 (충북대학교 전자정보대학) ;
  • 유영갑 (충북대학교 전자정보대학)
  • Lee, Kwan-Hee (College of Electrical and Computer Engineering Chungbuk National University) ;
  • Kim, Seung-Youl (College of Electrical and Computer Engineering Chungbuk National University) ;
  • Cho, Kyoungrok (College of Electrical and Computer Engineering Chungbuk National University) ;
  • You, Younggap (College of Electrical and Computer Engineering Chungbuk National University)
  • 투고 : 2012.12.10
  • 발행 : 2013.05.25

초록

본 논문은 인접한 전송선에서 크로스토크의 크기가 임의의 값을 갖는 것을 이용한 PUF 회로를 제안한다. 기존의 PUF는 동작전압과 온도변화와 같은 환경변화에 따라 출력 값이 일정하지 않기 때문에 신뢰성이 보장되지 않는다. 제안된 PUF는 세 개의 전송선으로 구성되고 두 개의 크로스토크를 발생시킨다. 각각의 전송선에서 발생되는 크로스토크의 크기는 서로 다른 임의의 값을 갖는다. 제안된 회로는 전송선간에 발생되는 각각의 크로스토크의 크기가 서로 다르고 그 크기는 항상 일정한 값을 갖고 크로스토크의 특성으로 동작전압과 온도변화와 같은 환경변화에 강하다. 따라서 제안된 PUF 회로는 요청된 값에 대해 신뢰성 있는 응답 값을 제공한다. 이 회로는 인증 및 암호화 등의 보안시스템에 활용 될 수 있다.

This paper presents a PUF circuit based on the randomness of crosstalk magnitudes in adjacent transmission lines. Conventional PUF circuitry suffers the reliability problem where a consistent output value is not guaranteed due to environmental changes, such as power supply voltage and operating temperature. The proposed circuit consists of three transmission lines. The crosstalk difference between two transmission line pairs can be arbitrary. The proposed circuit compares the crosstalk differences between two transmission line pairs, and yields consistent responses. The crosstalk differences are immune to operating environment changes. The proposed PUF circuit provides with reliable responses for given challenges. It can be utilized by security systems such as authentication and encryption.

키워드

참고문헌

  1. G. E. Suh, S. Devadas, "Physical unclonable functions for device authentication and secret key generation," ACM/IEEE 2007, pp. 9-14, Jun. 2007.
  2. J. W. Lee, L. Daihyun, B. Gassend, G. E. Suh, M. van Dijk and S. Devadas, "A technique to build a secret key in integrated circuits for identification and authentication applications," IEEE VLSI Circuits Symposium, pp. 176-179, Jun. 2004.
  3. J. Guajardo, S. S. Kumar, G.-J. Schrijen, and P. Tuyls, "Physical unclonable functions and public-key crypto for FPGA IP protection," FPL 2007, pp. 189-195, Aug. 2007.
  4. P. Lugli, A. Mahmoud, G. Csaba, M. Algasinger, M. Stutzmann and U. Ruhrmair, "Physical unclonable functions based on crossbar arrays for cryptographic applications," International journal of circuit theory and applications, 2012.
  5. N. Meijs and J. T. Fokkema, "VLSI circuit reconstruction from mask topology," Integration, vol. 2, no. 2, pp. 85-119, 1984. https://doi.org/10.1016/0167-9260(84)90016-6
  6. L. R. Zheng, D. Pamunuwa and H. Tenhunen, "Accurate a priori signal integrity estimation using a dynamic interconnect model for deep submicron VLSI design," ESSCIRC, pp. 324-327, sep. 2000.
  7. E. B. Rosa and F. W. Grover, Formulas and tables for the calculation of mutual and self-inductance, Washington Government Printing Office, 1916.
  8. T. H. Kim, D. C. Kim and Y. S. Eo, "Signal transient and crosstalk model of capacitively and inductively coupled VLSI interconnect lines," JSTS, vol. 7, no. 4, pp. 260-266, Dec. 2007. https://doi.org/10.5573/JSTS.2007.7.4.260
  9. J. E. Lorival, D. Deschacht, Y. Quere, T. L. Gouguec and F. Huret, "Additivity of capacitive and inductive coupling in submicronic interconnects," IEEE DTIS, pp. 300-304, 2006.
  10. S. H. Hall, G. W. Hall and J. A. McCall, High-speed digital system design, John Wiley & Sons New York, pp. 48, 2000.
  11. N. H. E. Weste and D. Harris, Principle of CMOS VLSI design: A system perspective, Addison Wesley, 2005.
  12. K. G. Verma, B. K. Kaushik, R. Singh "Effects of process variation in VLSI interconnects - a technical review," Microelectronics International, vol. 26, pp. 49-55, 2009. https://doi.org/10.1108/13565360910981562