References
- Shin, S.-J., Park, J.-M., Cho, D.H., Kim, Y.H. and Cho, N.-S., Acid hydrolysis characteristics of yellow poplar for high concentration of monosaccharides production, Korean J. Wood Sci. Technol. 37(6):578-584 (2009).
- McKibbins , S.W., Harris, J.F., Saeman, J.F. and Neill, W.K., Kinetics of the acid catalyzed conversion of glucose to 5-hydroxymethyl-2-furaldehyde and levulinic acid, Forest Prod. J. 12:17-23 (1962).
- Girisuta, B., Janssen, L.P.B.M. and Heeres, H.J., A kinetic study on the decomposition of 5-hydroxymethylfurfural into levulinic acid, Green Chem. 8:701-709 (2006). https://doi.org/10.1039/b518176c
- Cho D.H,, Shin, S.-J, and Kim YH, Effects of acetic and formic acid on ABE production by Clostridiumacetobutylicum and Clostridiumbeijerinckii, Biotechnol. Bioprocess Eng. 17:270-275 (2012). https://doi.org/10.1007/s12257-011-0498-4
- Patil, S.K.P and Lund, C.R.F., Formation and growth of humins via aldol addition and condensation during acid-catalyzed conversion of 5-hydroxymethylfurfural, Energ. Fuel. 25:4745-4755 (2011). https://doi.org/10.1021/ef2010157
-
Amarasekara, A.S., Williams, L.D., and Ebede, C.C., Mechanism of the dehydration of D-fructose to 5-hydroxymethylfurfural in dimethylsulfoxide at
$150^{\circ}C$ : an NMR study, Carbohyd. Res. 343: 3021-3024 (2008). https://doi.org/10.1016/j.carres.2008.09.008 - Schneider, B., Lichtenthaler, F.W., Steinle, G. and Schiweck, H., Distribution of furanoid and pyranoids tautomers of D-fructose in water, dimethylsulfoxide, and pyridine via 1H NMR intensities of anomeric hydroxy groups in [D6] DMSO, Liebigs Ann. Chem. 1985:2443-2453 (1985). https://doi.org/10.1002/jlac.198519851213
- Roman-Leshkov, Y., Chheda, J.N. and Dumesic, J.A., Phase modifiers promote efficient production of hydroxymethylfurfural from fructose, Science 312: 1933-1937(2006). https://doi.org/10.1126/science.1126337
- Binder, J.B., Raines, R.T., Simple chemical tranformation of lignocellulosic biomass into furans for fuels and chemicals, J. Am. Chem. Soc. 131:1979-1985 (2009). https://doi.org/10.1021/ja808537j
- Rosatella, A.A., Simeonov, S.P., Frade, R.F.M. and Afonso, C. A.M., 5-Hydroxymethylfurfural(HMF) as a building block platform: biological properties, synthesis and synthetic applications, Green Chem. 13:754-793 (2011). https://doi.org/10.1039/c0gc00401d
- Gandini, A., Furans as offspring of sugars and polysaccharides and progenitors of a family of remarkable polymers: a review of recent progress, Polym. Chem. 1:245-251(2010). https://doi.org/10.1039/b9py00233b
- Ma, J., Pang, Y., Wang, M., Xu, J., Ma, H. and Nie, X., The copolymerization reactivity of diols with 2,5-furandicarboxylic acid for furan-based copolymer materials, J. Mater. Chem. 22: 3457-3461 (2012). https://doi.org/10.1039/c2jm15457a
- Sim, J. and Shin, S.-J., Quantitative analysis of 5-HMF produced from fructose, J. Korea TAPPI 45(1):27-34 (2013). https://doi.org/10.7584/ktappi.2013.45.1.027
-
Lichtenthaler, F.W. and Ronninger, S.,
$\alpha$ -D-glucopyranosyl- D-fructose: distribution of furanoid and pyranoid tautomers in water, dimethylsulfoxide, and pyridine, Studies on ketose. part 4, J. Chem. Soc. Perkin. Trans. 2:1489-1497 (1990).