DOI QR코드

DOI QR Code

전환 시스템 접근법을 이용한 구간 시간지연 선형 시스템의 안정성

Stability of Interval Time-delayed Linear Systems using a Switched System Approach

  • 김주경 (충북 대학교 대학원 제어로봇공학과) ;
  • 김진훈 (충북대학교 전자정보대학 전자공학부)
  • Kim, Joo-Kyeong (School of Electronics Engineering, Chungbuk National University) ;
  • Kim, Jin-Hoon (School of Electronics Engineering, Chungbuk National University)
  • 투고 : 2013.01.22
  • 심사 : 2013.04.08
  • 발행 : 2013.05.01

초록

This paper considers the stability of linear systems having an interval time-varying delay using a switched system approach. The time-delay system is converted to the switched system equivalently, and then a stability criterion in the form of linear matrix inequality(LMI) is derived by using a parameter dependent Lyapunov-Krosovskii function(PD-LKF). In constructing a PD-LKF, the decomposition is employed for delay free intervals, and the reduction of conservatism is shown analytically as the number of decomposition increases. Finally, two well-known numerical examples are given to show the reduction of conservatism compared to the recent results.

키워드

참고문헌

  1. S. Boyd, L. E. Ghaoiu, E. Feron and V. Balakrish Linear matrix inequalities in system and control theory, SIAM, 1994.
  2. K. Gu, V. L. Kharitonov and J. Chen, Stability of time-delay systems, Birkhauser, 2003.
  3. Y. He, Q. G. Wang, C. Lin and M. Wu, "Delay range dependent stablility for systems with time-varying delay", Automatica, vol. 43(2), pp. 371-376, 2007. https://doi.org/10.1016/j.automatica.2006.08.015
  4. P. Park and J. W. Ko, "Stability and robust stability for sytems with a time-varying delay", Automatica, vol. 43, pp. 1855-1858. 2007. https://doi.org/10.1016/j.automatica.2007.02.022
  5. Q. L. Han, "A discrete delay decomposition approach to stability of linear retarded and neutral systems", Automatica, vol. 45, pp. 517-524, 2009. https://doi.org/10.1016/j.automatica.2008.08.005
  6. H. Shao, "New delay-dependent stability criteria for systems with interval delay", Automatica, vol. 45, pp. 744-749, 2009. https://doi.org/10.1016/j.automatica.2008.09.010
  7. J. Sun, G. P. Liu, J. Chen and D. Rees, "Improved delay-range-dependent stability criteria for linear systems with time-varying delays", Automatica, vol. 46, pp. 466-470, 2010. https://doi.org/10.1016/j.automatica.2009.11.002
  8. P. Park, J. W. Ko and C. Jeong, "Reciprocally convex approach to stability of systems with time-varying delays", Automatica, vol. 47, pp. 235-238, 2011. https://doi.org/10.1016/j.automatica.2010.10.014
  9. M. N. A. Parlakci, "Delay-dependent stability criteria for interval time-varying delay systems with nonuiform delay partitioning approach", Turk J. Elec. Eng, & Comp. Sci., vol. 19, pp. 763-773, 2011.
  10. S. I. Niculescu, A. T. Neto, J. M. Dion and L. Dugard, "Delay-dependent stability of linear systems with delayed state:An LMI Approach", Proc. 34th IEEE Conf. on Decision and Control, pp. 1495-1497, 1995.
  11. Y. S. Moon, P. Park and W. H. Kwon, "Delay-dependent robust stabilization of uncertain state-elayed systems", International Journal of Control, vol. 74, pp. 1447-1455, 2001. https://doi.org/10.1080/00207170110067116