DOI QR코드

DOI QR Code

Changes in Fruit Quality and Antioxidant Activity Depending on Ripening Levels, Storage Temperature, and Storage Periods in Strawberry Cultivars

딸기 품종의 성숙도, 저장온도 및 저장기간에 따른 과실 품질과 항산화 활성 변화

  • Choi, Hyo Gil (Protected Horticulture Research Station, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Kang, Nam Jun (Department of Horticulture, Gyeongsang National University) ;
  • Moon, Byoung Yong (Department of Biological Sciences, Inje University) ;
  • Kwon, Joon Kook (Protected Horticulture Research Station, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Rho, Il Rae (Protected Horticulture Research Station, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Park, Kyoung Sub (Protected Horticulture Research Station, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Lee, Sun Yi (Protected Horticulture Research Station, National Institute of Horticultural & Herbal Science, Rural Development Administration)
  • 최효길 (국립원예특작과학원 시설원예시험장) ;
  • 강남준 (경상대학교 원예학과) ;
  • 문병용 (인제대학교 생명과학부) ;
  • 권준국 (국립원예특작과학원 시설원예시험장) ;
  • 노일래 (국립원예특작과학원 시설원예시험장) ;
  • 박경섭 (국립원예특작과학원 시설원예시험장) ;
  • 이선이 (국립원예특작과학원 시설원예시험장)
  • Received : 2012.07.27
  • Accepted : 2012.10.24
  • Published : 2013.04.30

Abstract

The aim of this work was to study the changes in fruit quality and antioxidant activity depending on ripening levels, storage temperature and storage periods in two strawberry cultivars (Fragaria ${\times}$ ananassa cvs. Daewang and Seolhyang). Fully ripe strawberry fruits (100% colored fruits) and unripe strawberry fruits (50% colored fruits) were harvested and then stored at $4^{\circ}C$ and $15^{\circ}C$ for 10 days, respectively. Hardness, phytochemicals, sugars, organic acids and antioxidant activity of strawberry fruits were measured after storage for 5 and 10 days, respectively. When fruit hardness was compared between the two cultivars, 'Daewang' showed a greater degree of fruit hardness than 'Seolhyang'. 'Daewang' also showed higher amounts of phenolic compounds and sucrose than 'Seolhyang'. In contrary to this, 'Daewang' was shown to contain lower amounts of anthocyanin and fructose than 'Seolhyang'. However, antioxidant activities of both cultivars were almost identical. When the effects of storage temperature were examined on fruit hardness, fruits stored at $4^{\circ}C$ showed a higher degree of hardness than those stored at $15^{\circ}C$. During the period of fruit storage at $4^{\circ}C$ or $15^{\circ}C$, both cultivars showed marked decline in the contents of phenolic compounds as well as sucrose. Contrastingly, they showed higher amounts of anthocyanin and glucose after 10 days of storage. On the other hand, the contents of organic acids in strawberry fruits were influenced only by the period of storage, not depending on cultivars or temperatures. Antioxidant activities of fully ripe fruits declined remarkably after 10 days of storage, as compared to unripe fruits which showed a minor decrease or increase. When fully ripe fruits of both cultivars were stored at different temperatures, those stored at $15^{\circ}C$ showed a significant decrease in the antioxidant activity as compared to those stored at $4^{\circ}C$. However, changes of antioxidant activity in unripe fruits were minor. These observations in order to supply high quality strawberry suggest that fully ripe strawberry fruits should be harvested for the short-term storage and the appropriate ripe level fruit should be harvested for the long-term storage. Storage temperature is appropriate at $4^{\circ}C$.

본 연구는 '대왕'과 '설향' 딸기 두 품종의 성숙도, 저장온도 및 저장기간에 따른 과실의 품질 변화를 구명하고자 하였다. 100% 착색된 완숙 딸기 과실과 50% 착색된 미숙 딸기 과실을 수확하여 $4^{\circ}C$$15^{\circ}C$에서 10일 동안 각각 저장하였다. 딸기과실의 경도, 기능성 식물화합물, 유리당 함량, 유기산 함량 그리고 항산화 활성은 저장 5일과 10일 후에 각각 측정하였다. 두 품종의 과실 경도를 비교할 때, '대왕'품종이 '설향'보다 높은 수준의 과실경도를 보였으며, 페놀 화합물과 자당 함량 또한 '대왕'이 '설향'보다 높았다. 그러나 대조적으로 안토시아닌 및 과당 함량은 '대왕'이 '설향'보다 낮았다. 두 품종의 항산화 활성은 거의 동일하였다. 저장온도에 있어 과실경도는 $4^{\circ}C$에 저장한 과실이 $15^{\circ}C$에 저장된 과실보다 높은 수준의 경도를 보였다. $4^{\circ}C$$15^{\circ}C$에 저장되는 동안 두 품종의 과실 내 페놀화합물과 자당 함량이 감소되었다. 반면, 10일 동안 저장된 과실 내의 안토시아닌과 포도당 함량은 증가하였다. 딸기 과실에 함유되어 있는 유기산의 함량은 품종이나 온도보다는 저장기간에 의존적인 영향을 보였다. 10일 동안 저장된 미숙 과실의 항산화 활성이 미미하게 감소 또는 증가된 것에 비해, 완숙 과실의 항산화 활성은 현저하게 감소하였다. 서로 다른 온도에 저장된 두 품종의 완숙 과실을 비교할 때, $4^{\circ}C$에서 저장된 과실 보다 $15^{\circ}C$에서 저장된 과실의 항산화 활성이 현저하게 감소되었다. 반면, 미숙 과실의 항산화 활성 변화는 미미하였다. 본 연구 결과로 보아, 고품질의 딸기를 제공하기 위해서는 단기저장 시에는 완숙과실을 수확하고, 장기저장 시에는 저장기간에 따른 적정 성숙 단계의 과일을 수확하여 $4^{\circ}C$에 저장하는 것이 타당하다고 사료된다.

Keywords

References

  1. Ahmed, A.E. and J.M. Labavitch. 1980. Cell wall metabolism in ripening fruit. 1. cell wall changes in the ripening 'Bartlett' pears. Plants Physiol. 65:1009-1013. https://doi.org/10.1104/pp.65.5.1009
  2. Andersen, O.M., T. Fossen, K. Torskangerpoll, A. Fossen, and U. Hauge. 2004. Anthocyanin from strawberry (Fragaria ananassa) with the novel aglycone, 5-carboxypyranopelargonidin. Phytochemistry 65:405-410. https://doi.org/10.1016/j.phytochem.2003.10.014
  3. Ayala-Zavala, J.F., S.Y. Wang, C.Y. Wang, and G.A. Gonzalez-Aguilar. 2004. Effect of storage temperatures on antioxidant capacity and aroma compounds in strawberry fruit. LWT-Food Sci. Technol. 37:687-695. https://doi.org/10.1016/j.lwt.2004.03.002
  4. Blois, M.S. 1958. Antioxidant determination by the use of a stable free radical. Nature 181:1199-1120. https://doi.org/10.1038/1811199a0
  5. Cordenunsi, B.R., M.I. Genovese, J.R.O. do Nascimento, N.M.A. Hassimotto, J.R. dos Santos, and F.M. Lajolo. 2005. Effects of temperature on the chemical composition and antioxidant activity of three strawberry cultivars. Food Chem. 91:113-121. https://doi.org/10.1016/j.foodchem.2004.05.054
  6. Hamilton, D.A. and P.J. Davies. 1988. Sucrose and malic acid as the compounds exported to the apical bud of pea following $^{14}CO_2$ labeling of the fruit. Plant Physiol. 88:466-472. https://doi.org/10.1104/pp.88.2.466
  7. Holcroft, D.M. and A.A. Kader. 1999. Controlled atmosphereinduced changes in pH and organic acid metabolism may affect color of stored strawberry fruit. Postharvest Biol. Technol. 17:19-32. https://doi.org/10.1016/S0925-5214(99)00023-X
  8. Javanmardi, J. and C. Kubota. 2006. Variation of lycopene, antioxidant activity, total soluble solids and weight loss of tomato during postharvest storage. Postharvest Biol. Technol. 41:151-155. https://doi.org/10.1016/j.postharvbio.2006.03.008
  9. Kalt, W. and J.E. McDonald. 1996. Chemical composition of lowbush blueberry cultivars. J. Amer. Soc. Hort. Sci. 121:142-146.
  10. Kim, J.Y., H.J. Kim, G.O. Lim, S.A. Jang, and K.B. Song. 2010. Effect of combined treatment of ultraviolet-c with aqueous chlorine dioxide or fumaric acid on the postharvest quality of strawberry fruit "Flamengo" during storage. J. Korean Soc. Food Sci. Nutr. 39:138-145. https://doi.org/10.3746/jkfn.2010.39.1.138
  11. Kim, S.K., R.N. Bae, and C.H. Chun. 2011. Changes in bioactive compounds contents of 'Maehyang' and 'Seolhyang' strawberry fruits by UV light illumination. Kor. J. Hort. Sci. Technol. 29:172-180.
  12. Lee, K.H., K.S. Kim, M.H. Kim, S.R. Shin, and K.Y. Yoon. 1998. Studies on the softening of strawberry during circulation and storage (1) changes of cell wall components, protein and emzymes during ripening. J. Korean Soc. Food Sci. Nutr. 27:29-34.
  13. Lyon, B.G., J.A. Robertson, and F.I. Meredith. 1993. Sensory descriptive analysis of cv. Cresthaven peaches: Maturity, ripening, and storage effects. J. Food Sci. 58:177-181. https://doi.org/10.1111/j.1365-2621.1993.tb03238.x
  14. Moing, A., C. Renaud, M. Gaudillere, P. Raymond, P. Rpudeillac, and B. Denoyes-Rothan. 2001. Biochemical changes during fruit development of four strawberry cultivars. J. Amer. Soc. Hort. Sci. 126:394-403.
  15. Montero, T.M., E.M. Mollá, R.M. Esteban, and F.J. Lopez-Andreu. 1996. Quality attributes of strawberry during ripening. Scientia Hort. 65:239-250. https://doi.org/10.1016/0304-4238(96)00892-8
  16. Nunes, M.C.N., A.M.M.B. Morais, J.K. Brecht, and S.A. Sargent. 2002. Fruit maturity and storage temperature influence response of strawberries to controlled atmospheres. J. Amer. Soc. Hort. Sci. 127:836-842.
  17. Nunes, M.C.N., J.K. Brecht, A.M.M.B. Morais, and S.A. Sargent. 2006. Physicochemical changes during strawberry development in the field compared with those that occur in harvested fruit during storage. J. Sci. Food. Agri. 86:180-190. https://doi.org/10.1002/jsfa.2314
  18. Panico, A.M., F. Garufi, S. Nitto, R. Di Mauro, R.C. Longhitano, G. Magri, A. Catalfo, M.E. Serrentino, and G. De Guidi. 2009. Antioxidant activity and phenolic content of strawberry genotypes from Fragaria $\times$ ananassa. Pharmaceutical Biol. 47:203-208. https://doi.org/10.1080/13880200802462337
  19. Rho, I.R. 2010. Origin and main varieties of strawberries. National institute of Hoticultural & Herbal Science, Suwon, Korea p. 3-44.
  20. Re, R., N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26:1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  21. Slinkard, K. and V.L. Singleton. 1977. Total phenol analysis: Automation and comparison with manual methods. Am. J. Enol. Vitic. 28:49-55.
  22. Smith, W.L. and P.H. Heinze. 1958. Effect of color development at harvest on quality of postharvest ripened strawberries. Proc. Amer. Soc. Hort. Sci. 72:207-211.
  23. Treutter, D. 2010. Managing phenol contents in crop plants by phytochemical farming and breeding-visions and constraints. Int. J. Mol. Sci. 11:807-857. https://doi.org/10.3390/ijms11030807
  24. Zhang, Y., N.P. Seeram, R. Lee, L. Feng, and D. Heber. 2008. Isolation and identification of strawberry phenolics with antioxidant and human cancer cell antiproliferative properties. J. Agric. Food Chem. 56:670-675. https://doi.org/10.1021/jf071989c
  25. Zheng, Y., S.Y. Wang, C.Y. Wang, and W. Zheng. 2007. Changes in strawberry phenolics, anthocyanins, and antioxidant capacity in response to high oxygen treatments. LWT 40:49-57. https://doi.org/10.1016/j.lwt.2005.08.013

Cited by

  1. Physicochemical Characteristics and Antioxidant Activities of Organic Strawberries vol.30, pp.6, 2015, https://doi.org/10.7318/KJFC/2015.30.6.773
  2. Non-thermal Treatment of Postharvest Strawberry and Establishment of Its Optimal Freezing Condition vol.58, pp.1, 2015, https://doi.org/10.3839/jabc.2015.010
  3. Effects of temperature-fluctuation in a refrigerator on antioxidative index and storage qualities of various foods vol.50, pp.2, 2017, https://doi.org/10.4163/jnh.2017.50.2.133
  4. Vitamin C and antioxidant capacity stability in cherry and romaine during storage at different temperatures vol.49, pp.1, 2016, https://doi.org/10.4163/jnh.2016.49.1.51
  5. Effect of Spermine Treatment on Growth, Yield, and Quality of Strawberry under Low-Temperature Condition vol.27, pp.3, 2018, https://doi.org/10.5322/JESI.2018.27.3.195
  6. Phytochemical composition of everbearing strawberries and storage quality of strawberry fruit treated by precooling pp.2092-6456, 2018, https://doi.org/10.1007/s10068-018-0401-6
  7. 바나나 숙도에 따른 이화학적 특성 및 항산화 활성 vol.20, pp.4, 2013, https://doi.org/10.11002/kjfp.2013.20.4.475
  8. 수확 후 CO2 처리 시기 및 농도에 따른 '설향' 딸기 저장 중 품질변화 vol.23, pp.1, 2013, https://doi.org/10.11002/kjfp.2016.23.1.12
  9. 한국에서 재배한 설향 및 장희 딸기의 성숙도별 일반 품질 및 항산화능 분석 vol.26, pp.1, 2016, https://doi.org/10.17495/easdl.2016.2.26.1.80
  10. 생산단계 잔류허용기준 설정을 위한 딸기 중 bistrifluron과 chlorantraniliprole의 잔류 특성 연구 vol.36, pp.1, 2017, https://doi.org/10.5338/kjea.2017.36.1.09
  11. 살리실 산 처리가 딸기 생육과 과실 품질에 미치는 영향 vol.52, pp.5, 2013, https://doi.org/10.14397/jals.2018.52.5.11
  12. Influence of ripening stage and cultivar on physicochemical properties, sugar and organic acid profiles, and antioxidant compositions of strawberries vol.28, pp.6, 2013, https://doi.org/10.1007/s10068-019-00610-y
  13. Changes in Physicochemical Properties and Biological Activities of Kohlrabi (Brassica oleracea var. gongylodes) according to Storage Conditions vol.50, pp.7, 2013, https://doi.org/10.3746/jkfn.2021.50.7.699