DOI QR코드

DOI QR Code

Creep Behavior of Pultruded Ribbed GFRP Rebar and GFRP Reinforced Concrete Member

인발성형된 이형 GFRP 보강근과 GFRP 보강 콘크리트 부재의 크리프 거동

  • You, Young-Jun (Structural Engineering Research Division, Korea Institute of Construction Technology) ;
  • Park, Young-Hwan (Structural Engineering Research Division, Korea Institute of Construction Technology) ;
  • Kim, Hyung-Yeol (Structural Engineering Research Division, Korea Institute of Construction Technology) ;
  • Choi, Jin-Won (School of Civil and Environmental Engineering, Yonsei University) ;
  • Kim, Jang-Ho Jay (School of Civil and Environmental Engineering, Yonsei University)
  • 유영준 (한국건설기술연구원 인프라구조연구실) ;
  • 박영환 (한국건설기술연구원 인프라구조연구실) ;
  • 김형열 (한국건설기술연구원 인프라구조연구실) ;
  • 최진원 (연세대학교 사회환경시스템공학부) ;
  • 김장호 (연세대학교 사회환경시스템공학부)
  • Received : 2012.09.26
  • Accepted : 2013.02.21
  • Published : 2013.04.30

Abstract

Fiber reinforced polymer (FRP) has been gathering interest from designers and engineers for its possible usage as a replacement reinforcement of a steel reinforcing bar due to its advantageous characteristics such as high tensile strength, non-corrosive material, etc. Since it is manufactured with various contents ratios, fiber types, and shapes without any general specification, test results for concrete members reinforced with these FRP reinforcing bars could not be systematically used. Moreover, since investigations for FRP reinforced members have mainly focused on short-term behavior, the purpose of this study is to evaluate long-term behaviors of glass FRP (GFRP) reinforcing bar and concrete beams reinforced with GFRP. In this paper, test results of tensile and bond performance of GFRP reinforcing bar and creep behavior are presented. In the creep tests, results showed that 100 years of service time can be secured when sustained load level is below 55% of tensile strength of GFRP reinforcing bar. A modification factor of 0.73 used to calculate long-term deflection of GFRP reinforced beams was acquired from the creep tests for GFRP reinforced concrete beams. It is expected that these test results would give more useful information for design of FRP reinforced members.

섬유복합체(FRP)는 비부식성 재료라는 특징으로 인해 이상적인 철근 대체재로 주목 받고 있다. 그러나 현재 FRP 보강근은 철근과 달리 일반적으로 수용되는 고정된 형태가 존재하지 않고 다양한 재료와 성분비, 형태 등으로 제작되기 때문에 이에 대한 성능평가 데이터에 근거한 FRP 보강 콘크리트 부재의 거동특성 구명은 상당부분 제한될 수 있다. 더군다나 FRP 보강 콘크리트 부재의 휨거동에 대한 평가는 주로 단기 거동 측면에 집중되어 이루어져 왔다. 이 연구는 GFRP 보강근 및 이를 사용하여 보강된 콘크리트 부재의 장기거동을 평가하기 위한 것으로, 먼저 철근 대체용으로 개발된 GFRP 보강근에 대한 성능평가 결과를 제시하였고, 이의 크리프 거동 특성에 대한 3년간의 계측 결과를 제시하였다. 실험 결과 인장강도의 약 55% 이하의 하중이 지속적으로 재하되는 경우에는 100년 이상의 내구연한을 확보할 수 있는 것으로 나타났다. 또한 GFRP 보강 콘크리트 보의 장기거동을 약 1년간 관찰하였으며 이로부터 FRP 보강 부재의 장기처짐 계산식에 사용되는 수정계수 값 0.73을 도출하였다. 따라서 이 연구로부터 도출된 GFRP 보강근 및 이로 보강된 콘크리트 보의 단기 및 장기 거동 특성값은 FRP 보강 콘크리트 부재의 설계에 유용하게 활용될 수 있을 것으로 사료된다.

Keywords

References

  1. ACI Committee 440, "ACI 440.1 R-06. Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars," American Concrete Institute, 2006, pp. 6-8, 124.
  2. Choi, D. W., Ha, S. S., and Lee, C. H., "Development Length of GFRP Rebars Based on Pullout Test," Journal of the Korea Concrete Institute, Vol. 19, No. 3, 2007, pp. 323-331. https://doi.org/10.4334/JKCI.2007.19.3.323
  3. Sim, J. S., Oh, H. S., Ju, M. K., and Lim, J. H., "New Suggestion of Effective Moment of Inertia for Beams Reinforced with the Deformed GFRP Rebar," Journal of the Korea Concrete Institute, Vol. 20, No. 2, 2008, pp. 185-191. https://doi.org/10.4334/JKCI.2008.20.2.185
  4. Seo, D. W., Han, B. S., and Shin, S. W., "Behaviour of One-Way Concrete Slabs Reinforced with Fiber Reinforced Polymer (FRP) Bars," Journal of the Korea Concrete Institute, Vol. 19, No. 6, 2007, pp. 763-771. https://doi.org/10.4334/JKCI.2007.19.6.763
  5. Youssef, T., Benmokrane, B., El-Gamal S., and El-Salakawy, Y. E., "Deflection and Strain Variation of GFRP-Reinforced Concrete Beams After One Year of Continuous Loading," In: Proceeding of 9 International Symposium on Fiber Reinforced Polymer Reinforcement for Concrete Structures (FRPRCS-9), Sydney, Australia, 2009, pp. 1-4.
  6. Vijay, P. V., Aging and Design of Concrete Members Reinforced with GFRP Bars, Ph.D Thesis, West Virginia University, 1999, pp. 2-3, 166-169.
  7. Brown, V. L., "Sustained Load Deflections in GFRPReinforced Concrete Beams," In: Proceedings of the Third International Symposium on Non-Metallic (FRP) Reinforcement for Concrete Structures (FRPRCS-3), Japan Concrete Institute, Sapporo, Japan, Vol. 2, 1997, pp. 495-502.
  8. Kage, T., Masuda, Y., Tanano, Y., and Sato, K., "Long- Term Deflection of Continuous Fiber Reinforced Concrete Beams," In: Proceedings of the Second International RILEM Symposium (FRPRCS-2), Ghent, Belgium, 1995, pp. 251-258.
  9. Trejo, D., Aguiñiga, F., Robert, L. Y., Ray, W. J., and Peter, B. K., "Characterization of Design Parameters for Fiber Reinforced Polymer Concrete Systems," Report 9-1520-3, Texas A&M University and Texas Transportation Institute, 2003, 115 pp.
  10. ISIS Canada, Design Manual 3: Reinforcing Concrete Structures with Fiber Reinforced Polymers, The Canadian Network of Centers of Excellence on Intelligent Sensing for Innovative Structures, 2001, pp. 5-16.
  11. Joh, O., Wang, Z., and Goto, Y., "Long-Term Deflection Fiber Reinforced Polymer Concrete Beams," Fourth International Symposium on Fiber Reinforced Polymer Reinforcement for Reinforced Concrete Structures, ACI International, 1999, pp. 577-590.
  12. Karbhari, V. M., Chin, J. W., Hunston, D., Benmokrane, B., Juska, T., Morgan, R., Lesko, J. J., Sorathia, U., and Reynaud, D., "Durability Gap Analysis for Fiber-Reinforced Polymer Composites in Civil Infrastructure," Journal of Composites for Construction, Vol. 7, No. 3, 2003, pp. 238-247. https://doi.org/10.1061/(ASCE)1090-0268(2003)7:3(238)
  13. Iyer, S. L. and Anigol, M., "Testing and Evaluating Fiber Glass, Graphite and Steel Cables for Pretensioned Beams," Advanced Composite Materials in Civil Engineering Structures, Proceedings of the Specialty Conference, ASCE, 1991, pp. 44-56.
  14. Uomoto, T. and Nishimura, T., "Deterioration of Aramid, Glass, and Carbon Fibers Due to Alkali, Acid, and Water in Different Temperatures," Fourth International Symposium on Fiber-Reinforced Polymer Reinforcement for Reinforced Concrete Structures (SP-188), ACI International, 1999, pp. 515-522.
  15. Yamaguchi, T., Kato, Y., Nishimura, T., and Uomoto, T., "Creep Model of FRP Rods Based on Fiber Damaging Rate," In: Proceedings of the First International Conference, 1998, pp. 427-438.
  16. Rahman, A. H., Kingsley, C. Y., and Crimi, J., "Behavior of FRP Grid Reinforcement for Concrete Under Sustained Load," In: RILEM Proceedings(FRPRCS 2), 1995, pp. 90-99.
  17. ACI Committee 318, Building Code Requirements for Structural Concrete (ACI 318-05) and Commentary (318R-05), American Concrete Institute, Farmington Hills, Mich., 2005, 123 pp.
  18. Vijay, P. V. and GangaRao, H. V. S., "Creep Behavior of Concrete Beams Reinforced with GFRP Bars," International Conference (CDCC'98), Sherbrooke, Quebec, Canada, 1998, pp. 661-667.
  19. Laoubi, K., El-Salakawy, E., and Benmokrane, B., "Creep and Durability of Sand-Coated Glass FRP Bars in Concrete Elements under Freeze/Thaw Cycling and Sustained Loads," Cement and Concrete Composites, Vol. 28, Issue 10, 2009, pp. 869-878. (doi: http://dx.doi.org/10.1016/j.cemcon comp.2006.07.014)
  20. Yousef, A. A. and Tarek, H. A., "Creep Effect on the Behavior of Concrete Beams Reinforced with GFRP Bars Subjected to Different Environments," Construction and Building Materials, Vol. 21, Issue 7, 2007, pp. 1510-1519. (doi: http://dx.doi.org/10.1016/j.conbuildmat.2006.05.008)
  21. Aguíñiga, F. and Estrada, H., "Creep Induced Deflections of Concrete Elements Reinforced with Polymer Composite Bars," Architectural Engineering Conference (AEI) 2006, Omaha, Nebraska, United States, 2006, pp. 1-11.
  22. Gross, S., Yost, J., and Kevgas, G., "Time-Dependent Behavior of Normal and High Strength Concrete Beams Reinforced With GFRP Bars Under Sustained Loads," High Performance Materials in Bridges, ASCE, 2003, pp. 451-462.
  23. You, Y. J., Park, Y. H., Park, J. S., and Kim, K. H., "Development of FRP Rebar for Concrete Structures in Korea," Proceedings of the 8th International Symposium on Fiber Reinforced Polymer Reinforcement for Concrete Structures, Patras, Greece, 2007, pp. 440-441.
  24. CSA Standard, Design and Construction of Building Components with Fibre-Reinforced Polymers, Canadian Standards Association, S806-02, 2002, pp. 106-115.
  25. ACI Committee 440, ACI 440.3R-04. Guide Test Methods for Fiber-Reinforced Polymers (FRPs) for Reinforcing or Strengthening Concrete Structures, American Concrete Institute, 2004, pp. 10-11.

Cited by

  1. Moment Resistance Performance Evaluation of Larch Glulam Joint Bonded in Glass Fiber Reinforced Plastic Rods vol.43, pp.1, 2015, https://doi.org/10.5658/WOOD.2015.43.1.60