DOI QR코드

DOI QR Code

Analysis Technique for Chloride Penetration in High Performance Concrete Behavior Considering Time-Dependent Accelerated Chloride Diffusivity

촉진염화물 확산계수의 시간의존성을 고려한 고성능 콘크리트의 염화물 침투 해석기법

  • 권성준 (한남대학교 건설시스템공학과) ;
  • 박선규 (목원대학교 건축학부)
  • Received : 2012.08.14
  • Accepted : 2012.11.27
  • Published : 2013.04.30

Abstract

Recently, accelerated chloride diffusion coefficients are used for an evaluation of chloride behavior. Similar as apparent diffusion coefficients, accelerated diffusion coefficients decrease with time. In this study, decrease in diffusion coefficient with time is simulated with porosity. Utilizing DUCOM-program, porosities from 15 mix proportions are obtained and diffusion coefficients are modelled with regression analysis of porosity for 270 days. Considering non-linear binding capacity which means the relation between free and bound chloride ion, chloride behavior in high performance concrete is evaluated. Through utilizing the previous test results for concrete under chlorides for 180 days, the applicability of the proposed technique is verified. The proposed technique is evaluated to reasonably predict the chloride behavior in concrete with various w/c (water to cement) ratios and mineral admixtures (GGBFS and FA). It is also shown that decrease in chloride diffusion should be considered for chloride prediction in concrete with mineral admixture since it has very clear decrease in diffusivity with time.

촉진 염화물 확산계수는 최근들어 염화물 거동 평가를 위하여 많이 사용되고 있다. 촉진 염화물 확산계수는 겉보기 확산계수와 마찬가지로 재령에 따라 감소하는데, 이 연구에서는 공극률을 이용하여 촉진확산계수의 감소를 구현하였다. DUCOM 프로그램을 이용하여 15 배합에 대한 공극률을 도출하였으며, 이를 회귀분석하여 재령 270일 동안 감소하는 염화물 확산계수를 모델링하였다. 또한 자유염화물과 구속염화물간의 관계인 비선형 구속능을 고려하여, 고성능 콘크리트내의 염화물 거동을 평가하였다. 기존의 실험자료인 180일간 염화물에 침지되어 있는 시편을 이용하여, 이 연구에서 제안한 기법의 검증을 수행하였다. 제안된 기법은 다양한 물-시멘트비 및 혼화재(고로슬래그 미분말 및 플라이애쉬)를 가진 고성능 콘크리트의 염화물 거동을 적절하게 평가하였다. 또한 혼화재료를 사용한 콘크리트의 경우, 확산계수의 시간의존성이 뚜렷하므로 염화물 거동 해석시 재령에 따른 염화물 확산계수의 감소를 반드시 구현해야 함을 알 수 있었다.

Keywords

References

  1. Broomfield, J. P., Corrosion of Steel in Concrete: Understanding, Investigation and Repair, London, E&FN, 1997, pp. 1-15.
  2. RILEM, "Durability Design of Concrete Structures," Report of RILEM Technical Committee 130-CSL, E&FN, 1994, pp. 28-52.
  3. Thomas, M. D. A. and Bamforth, P. B., "Modeling Chloride Diffusion in Concrete: Effect of Fly Ash and Slag," Cement and Concrete Research, Vol. 29, No. 4, 1999, pp. 487-495. (doi: http://dx.doi.org/10.1016/S0008-8846(98)00192-6)
  4. CEB-FIP, Model Code for Service Life Design, The International Federation for Structural Concrete (fib), Task Group 5.6, 2006, pp. 16-33.
  5. Thomas, M. D. A. and Bentz, E. C., Computer Program for Predicting the Service Life and Life-Cycle Costs of Reinforced Concrete Exposed to Chlorides, Life365 Manual, SFA, 2002, pp. 12-56.
  6. Ary, C., Buenfeld, N. R., and Newmann, J. B., "Factors Influencing Chloride Binding in Concrete," Cement and Concrete Research, Vol. 20, No. 2, 1990, pp. 291-300. (doi: http://dx.doi.org/10.1016/0008-8846(90)90083)
  7. Tang, L., Chloride Transport in Concrete, Publication P-96:6. Division of Building Materials, Chalmers University of Technology, Sweden, 1996, pp. 26-85.
  8. Maekawa, K., Ishida, T., and Kishi, T., "Multi-Scale Modeling of Concrete Performance," Journal of Advanced Concrete Technology, Vol. 1, No. 2, 2003, pp. 91-126. https://doi.org/10.3151/jact.1.91
  9. Park, S. S., Kwon, S. J., and Jung, S. H., "Analysis Technique for Chloride Penetration in Cracked Concrete Using Equivalent Diffusion and Permeation," Construction and Building Materials, Vol. 29, No. 2, 2012, pp. 183-192. (doi: http://dx.doi.org/10.1016/j.conbuildmat.2011.09.019)
  10. Maekawa, K., Ishida, T., and Kishi, T., Multi-Scale Modeling of Structural Concrete, Tylor&Francis, London and Newyork, 1st Edition, 2009, pp. 291-352.
  11. Tang, L. and Joost, G., "On the Mathematics of Time-Dependent Apparent Chloride Diffusion Coefficient in Concrete," Cement and Concrete Research, Vol. 37, Issue 4, 2007, pp. 589-595. (doi: http://dx.doi.org/10.1016/j.cemconres.2007.01.006)
  12. Poulsen, E., "On a Model of Chloride Ingress into Concrete, Nordic Miniseminar-Chloride Transport," Department of Building Materials, Chalmers University of Technology, Gothenburg, 1993, pp. 1-12.
  13. Tang, L., "Electrically Accelerated Methods for Determining Chloride Diffusivity in Concrete-Current Development," Magazine of Concrete Research, Vol. 48, No. 176, 1996, pp. 173-179. https://doi.org/10.1680/macr.1996.48.176.173
  14. Maekawa, K., Chaube, R., and Kishi, T., Modeling of Concrete Performance: Hydration, Microstructure Formation and Mass Transport, Routledge, London and New York, 1999, pp. 150-177.
  15. Welty, J. R., Wicks, C. M., and Wilson, R. E., Fundamental of Momentum, Heat, and Mass Transfer, John Wiley& Sons, Inc. pp. 363-386.
  16. Song, H. W. and Kwon, S. J., "Evaluation of Chloride Penetration in High Performance Concrete Using Neural Network Algorithm and Micro Pore Structure," Cement and Concrete Research, Vol. 39, No. 9, 2009, pp. 814-824. (doi: http://dx.doi.org/10.1016/j.cemconres.2009.05.013)
  17. Lee, H. S. and Kwon, S. J., "Technique for Chloride Behavior Using Apparent Diffusion Coefficient of Chloride Ion from Neural Network Algorithm," Journal of the Korea Concrete Institute, Vol. 24, No. 4, pp. 481-490. https://doi.org/10.4334/JKCI.2012.24.4.481
  18. Samsung Construction, "Evaluation for Diffusivity Characteristics in High Durable Concrete," Technical Report, Seoul, Korea, 2003, pp. 27-33.
  19. Song, H. W., Kwon, S. J., Byun, K. J., and Park, C. K., "A Study on Analysis Technique of Chloride Diffusion Considering Characteristics of Mixture Design for high Performance Concrete Using Mineral Admixture," Journal of Korean Society of Civil Engineers, Vol. 25, No. 1A, 2005, pp. 213-223.
  20. Arya, C. and Newmann, J. B., "Assessment of Four Methods of Determining the Free Chloride Content of Concrete," Materials and Structures, Research and Testing (Rilem, Paris), Vol. 23, 1990, pp. 319-330. (doi: http://dx.doi.org/10.1007/BF02472710)
  21. Tang, L., Chloride Transport in Concrete, Publication P-96:6, Division of Building Materials, Chalmers University of Technology, Sweden, 1996, pp. 26-85.

Cited by

  1. Analytical Estimation of the Performance of Marine Concrete with Mineral Admixture vol.3, pp.4, 2015, https://doi.org/10.14190/JRCR.2015.3.4.301