DOI QR코드

DOI QR Code

Flexural Behaviors of GFRP Rebars Reinforced Concrete Beam under Accelerated Aging Environments

GFRP Rebar 보강 콘크리트 보의 급속노화환경에서의 휨 거동에 관한 연구

  • Park, Yeon-Ho (Dept. of Civil Engineering, University of Texas at Arlington) ;
  • Choi, Yeol (School of Architecture and Civil Engineering, Kyoungpook National University)
  • 박연호 (택사스 주립대(알링턴) 토목공학과) ;
  • 최열 (경북대학교 건축.토목공학부)
  • Received : 2012.07.24
  • Accepted : 2013.01.14
  • Published : 2013.04.30

Abstract

The use of fiber-reinforced polymer (FRP) reinforcing bars in concrete structures has been increased as an alternative of steel reinforcement which has shown greater vulnerability to corrosion problem. However, the long-term performance of concrete members with FRP reinforcement is still questioned in comparison to the used of steel reinforcement. This study presents the results of an experimental study on the long-term behaviors of GFRP (glass fiber reinforced polymer) bar reinforced concrete beams after exposed to accelerated aging in an environmental chamber with temperature of $46^{\circ}C$ ($115^{\circ}F$) and 80% of relative humidity up to 300 days. The objectives of this research was to compare strength degradation and change of ductility between GFRP reinforced concrete beams and steel reinforcement beams after accelerated aging. Two types (wrapped and sand-coated surface) of GFRP bars and steel were reinforced. in concrete beams. Test results show that the failure modes of GFRP bar reinforced concrete beams are very similar with traditional RC beams, and the change of load-carrying capacity of steel reinforcing concrete beam is greater than that of GFRP bar reinforcing concrete beam under the accelerated aging. Test result also shows that the use of GFRP reinforcing in concrete could be introduced more brittle failure than that of steel reinforcing for practical application. The deformability factor up to compression failures indicates no significant variation before and after exposure of accelerated aging.

철근콘크리트(reinforced concrete) 구조부재에서 철근의 부식으로 인한 문제점을 개선하고자 섬유보강 복합재료(FRP) 보강근(rebar)을 사용하는 것에 대한 연구가 꾸준히 진행되어져 오고 있다. 하지만 이러한 FRP 보강근을 사용한 콘크리트 부재의 환경에 대한 장기거동에 대한 연구가 아직도 미흡한 수준이다. 이 연구는 GFRP(glass fiber reinforced polymer) 보강근을 사용한 콘크리트 부재를 온도 약 $46^{\circ}C$와 습도가 80%인 인위적인 실험실에서 최대 300일까지 노출시킨 후의 장기 거동에 대한 실험적 연구를 제시하였다. 비교를 위하여 두가지 서로 다른 GFRP 보강근과 철근을 보강한 콘크리트 보 시험체를 제작하였다. 실험 결과, 장기 노출환경에서도 GFRP 보강근을 보강한 콘크리트 보 시험체의 파괴형태는 철근 보강 콘크리트 보시험체와 매우 유사한 파괴형태를 나타내었으며, 노출 시간에 따른 하중저항 감소값은 철근이 보강된 경우가 GFRP 보강근이 보강된 경우보다 하중저항 감소값이 크게 일어났다. 또한 GFRP 보강근 보강 콘크리트 보 시험체를 설계할 시에는 철근 보강보다 취성파괴에 대한 충분한 대비가 요구됨을 알 수 있었다. 그리고 압축파괴에 대한 변형도 계수(deformability factor)는 모든 경우에서 노출시간에 관계없이 큰 변화가 없음을 알 수 있었다.

Keywords

References

  1. ASCE, Report Card for America's Infrastructure, American Society of Civil Engineers, 2009, pp. 75-76.
  2. ACI-440.1R-06, Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars, ACI, Farmington Hills, MI, USA, pp. 1-87.
  3. Almusallam, T. H., Al-Salloum, Y. A., Alsayed, S. H., and Mosallam, A. S., "Durability and Long-Term Behavior of Reinforced Concrete Beams Strengthened with FRP Composites," Proceedings International Conference on FRP Composites in Civil Engineering, Vol. 2, 2001, pp. 1579- 1588.
  4. Bank, L. C., Gentry, T. R., and Barkatt, A., "Accelerated Test Methods to Determine the Long-Term Behavior of FRP Composite Structures-Environmental Effects," Journal of Reinforce Plastics and Composites, Vol. 14, 1995, pp. 559-587. https://doi.org/10.1177/073168449501400602
  5. Karbhari, V. M. and Helbling, C. S., "Environmental Durability of E-glass Composites underthe Combined Effect of Moisture," Temperature and Stress, Conference on Durability and Sustainability of FRP Composites for Construction, 2002, pp. 247-258.
  6. Leung, H. Y., Balendran, R. V., and Lim, C. W., "Flexural Capacity of Strengthened Concrete Beams Exposed to Different Environmental Conditions," Proceedings International Conference on FRP Composites in Civil Engineering, 2001, Vol. 2, Hong Kong, pp. 1597-1606.
  7. Mufti, M., Benmokrane, B., Banthia, N., and Newhook, J., "Durability of GFRP Reinforced Concrete in Field Structures," 7th International Conference on FRPRCS, 2005, SP-230-77, pp. 1361-1377.
  8. Trejo, D., Gardoni, P., and Kim, J., "2009, Long-Term Performance of GFRP Reinforcement, Technical Report 0-6069-1," Texas Transportation Institute, 2009, Texas, USA, pp. 231-242.
  9. Vijay, P. V. and GangaRao, H. V., "Accelerated and Natural Weathering of Glass Fiber Reinforced Plastic Bars," 4th International Conference on FRPRCS, 1999, pp. 605-614.
  10. Vijay, P. V. and GangaRao, H. V., "Bending Behavior and Deformability of Glass Fiber-Reinforced Polymer Reinforced Concrete Members," ACI Structural Journal, 2001, Vol. 98, pp. 834-842.
  11. Davalos, J. F., Chen, Y., and Ray, I., "Effects of FRP Bar Degradation on Interface Bond with High Strength Concrete," Cement and Concrete Composites, Vol. 30, Issue 8, 2008, pp. 722-730. (doi: http://dx.doi.org/10.1016/j.cemconcomp.2008.05.006)
  12. Bakis, C. E., Nanni, A., and Terosky, J. A., "Selfmonitoring, Pseudo-Ductility, Hybrid FRP Reinforcement Rods for Concrete Applications," Composite Science and Technology, Vol. 61, Issue 6, 2001, pp. 815-823. (doi: http://dx.doi.org/10.1016/S0266-3538(00)00184-6)
  13. El-Salakawy, E., Benmokrane B., and Desgagne, G., "FRP Composites Bars for the Concrete Deck Slab of Wotton Bridge," Canadian Journal of Civil Engineering, Vol. 30, Issue. 5, 2003, pp. 861-870. https://doi.org/10.1139/l03-055
  14. Jaeger, L. G., Mufti, A. A., and Tadros, G., "The Concept of the Overall Performance Factor in Rectangular-Section Reinforced Concrete Members," Proceeding of 3rd International Symposium on Non-Metallic (FRP) Reinforcement for Concrete Structures, Vol. 2, 1999, pp. 551-559.
  15. Park, C. G., Won, J. P., and Kang, J. W., "Recommendations of Environmental Reduction Factor of FRP Rebar for Durability Design of Concrete Structure," Journal of the Korea Concrete Institute, Vol. 16 No. 4, 2004, pp. 529-539. https://doi.org/10.4334/JKCI.2004.16.4.529
  16. Choi, Y. C., Park, K. S., Choi, C. S., and Choi, H. K., "Bond Properties of GFRP Rebar in Fiber Reinforced Concrete (Engineered Cementitious Composite)," Journal of the Korea Concrete Institute, Vol. 23, No. 6, 2011, pp. 809-815. https://doi.org/10.4334/JKCI.2011.23.6.809