References
- W. Barth, K. Hulek, C. Peters, and A. Van de Ven, Compact Complex Surfaces, 2nd ed. Springer-Verlag, Berlin, 2004.
-
F. Catanese, Surfaces with
$K^2$ =pg=1 and their period mapping, Algebraic geometry (proc. Summer Meeting, Univ. Copenhagen, Copenhagen, 1978), Lecture Notes in Math. 732 (1979), 1-29. -
F. Catanese and O. Debarre, Surfaces with
$K^2$ =2, pg=1, q=0, J. Reine Angew. Math. 395 (1989), 1-55. - H. Esnault and E. Viehweg, Lectures on vanishing theorems, DMV Seminar 20, Birkhauser Verlag, Basel, 1992.
- H. Flenner and M. Zaidenberg, Q-acyclic surfaces and their deformations, Classification of algebraic varieties (L'Aquila, 1992), 143-208, Contemp. Math., 162, Amer. Math. Soc., Providence, RI, 1994.
- R. E. Gompf, A new construction of symplectic manifolds, Ann. of Math. 142 (1995), no. 3, 527-595. https://doi.org/10.2307/2118554
- J. Keum, Y. Lee, and H. Park, Construction of surfaces of general type from elliptic surfaces via Q-Gorenstein smoothing, Math. Z. 272 (2012), no 3-4, 1243-1257. https://doi.org/10.1007/s00209-012-0985-0
- S. Kondo, Enriques surfaces with nite automorphism groups, Japan. J. Math. (N.S.) 12 (1986), no. 2, 191-282. https://doi.org/10.4099/math1924.12.191
- V. Kynev, An example of a simply connected surface of general type for which the local Torelli theorem does not hold, C. R. Acad. Bulgare Sci. 30 (1977), no. 3, 323-325.
-
Y. Lee and J. Park, A simply connected surface of general type with pg = 0 and
$K^2$ =2, Invent. Math. 170 (2007), no. 3, 483-505. https://doi.org/10.1007/s00222-007-0069-7 - Y. Lee, A construction of Horikawa surface via Q-Gorenstein smoothings, Math. Z. 267 (2011), no. 1-2, 15-25. https://doi.org/10.1007/s00209-009-0608-6
-
B. D. Park, Exotic smooth structures on
$3CP^2#n{\overline}{CP^2}$ , Part II, Proc. Amer. Math. Soc. 128 (2000), no. 10, 3067-3073. -
J. Park, Exotic smooth structures on
$3CP^#8\overline{CP^2}$ , Bull. London Math. Soc. 39 (2007), no. 1, 95-102. https://doi.org/10.1112/blms/bdl017 -
H. Park, J. Park, and D. Shin, A simply connected surface of general type with pg = 0 and
$K^2$ =3, Geom. Topol. 13 (2009), no. 2, 743-767. https://doi.org/10.2140/gt.2009.13.743 -
H. Park, A simply connected surface of general type with pg = 0 and
$K^2=4$ , Geom. Topol. 13 (2009), no. 3, 1483-1494. https://doi.org/10.2140/gt.2009.13.1483 -
A. Stipsicz and Z. Szabo, Small exotic 4-manifolds with
$b^+_2$ = 3, Bull. London Math. Soc. 38 (2006), no. 3, 501-506. https://doi.org/10.1112/S0024609306018406 -
A. Todorov, A construction of surfaces with pg = 1, q = 0 and
$2{\leq}(K^2){\leq}8$ : Counterexamples of the global Torelli theorem, Invent. Math. 63 (1981), no. 2, 287-304. https://doi.org/10.1007/BF01393879
Cited by
- Extending symmetric determinantal quartic surfaces vol.172, pp.1, 2014, https://doi.org/10.1007/s10711-013-9913-7
- Spherical subcategories in algebraic geometry vol.289, pp.11-12, 2016, https://doi.org/10.1002/mana.201400232
- SMOOTHLY EMBEDDED RATIONAL HOMOLOGY BALLS vol.53, pp.6, 2016, https://doi.org/10.4134/JKMS.j150492