DOI QR코드

DOI QR Code

진동 평판 위 액적의 형상 진동 변화 및 모드 특성

Shape Oscillation and Mode Characteristic of Droplet on Vibrating Flat Surface

  • 투고 : 2012.11.02
  • 심사 : 2012.12.11
  • 발행 : 2013.05.01

초록

본 연구는 주기적인 강제 진동이 가해지는 액적의 모드 특성을 실험적으로 이해하는 것을 목적으로 하고 있다. 액적의 공진 주파수 예측을 수행하여 이론 및 실험적 해석을 통해 두 접근방법의 타당성을 파악하였으며, 초고속카메라를 사용하여 액적의 다양한 변형 특성-모드 형상, 분리, 미소 액적의 발생, 그리고 비틀림의 특성을 관찰하였다. 이론 해석 및 실험결과와의 비교에 있어 공진 주파수 값의 차이가 약 15% 이하라는 것이 도출되었으며 이러한 차이의 발생 원인으로 접촉선 마찰, 비선형벽 고착, 실험의 불확실성 등에 큰 영향을 받는 것으로 판단된다. 접촉선이 고정되어있을 경우와 작은 진폭 조건 하에서 액적의 모양은 대칭형상을 가졌으며, 공진 주파수에서의 로브의 크기는 주변부 주파수에서의 로브 크기보다 더 크게 된다는 점을 확인하였다.

This study aims to understand the mode characteristics of a droplet under a periodic forced vibration. To predict the resonance frequency of a droplet, theoretical and experimental approaches were employed. A high-speed camera was used to capture the various deformation characteristics of a droplet-mode shape, detachment, separated secondary droplet, and skewed deformation. The comparison between the theoretical and the experimental approaches shows a ~10% discrepancy in the prediction of the resonance frequency, which appears to be caused by the effect of contact line friction, nonlinear wall adhesion, and experimental uncertainty. Owing to contact-line pinning and smaller amplitude, the droplet shape becomes symmetric and the size of each lobe at the resonance frequency exceeds that at the neighbor, which is out of resonance.

키워드

참고문헌

  1. Rayleigh, L., 1890, "The Theory of Sound," Macmillan
  2. Wilkes, E. D. and Basaran, O. A., 1997, "Forced Oscillations of Pendant (Sessile) Drops," Phys. Fluids, Vol. 9, pp. 1512-1528. https://doi.org/10.1063/1.869276
  3. Lundgren, T. S. and Mansour, N. N., 1988, "Oscillation of Drops in Zero Gravity with Weak Vicous Effects," J. Fluid, Vol. 194, pp. 479-510. https://doi.org/10.1017/S0022112088003076
  4. Rodot, H., Bisch, C. and Lasek, A., 1979, "Zero Gravity Simulation of Liquids in Contact with a Solid Surface," Acta Astronaut, Vol. 6, pp. 1083-1092. https://doi.org/10.1016/0094-5765(79)90057-2
  5. Daniel, S., Sircar, S., Gliem, J. and Chaudhury, M. K., 2004, "Ratcheting Motion of Liquid Drops on Gradient Surfaces," Langmuir, Vol. 20, pp. 4085-4098. https://doi.org/10.1021/la036221a
  6. Daniel, S., Chaudhury, M. K. and De Gennes, P. G., 2005, "Vibration-Actuated Drop Motion on Surfaces for Batch Microfluidic Processes," Langmuir, Vol. 21, pp. 4240-4248. https://doi.org/10.1021/la046886s
  7. Dong, L., Chaudhury, A. and Chaudhury, M. K., 2006, "Lateral Vibration of a Water Drop and Its Motion on a Vibrating Surface ." Eur. Phys. J. E, Vol. 21, pp. 231-242. https://doi.org/10.1140/epje/i2006-10063-7
  8. Noblin, X., Buguin, A. and Brochard-Wyart, F., 2009, "Vibration of Sessile Drops," Eur. Phys. J. Special Topics, Vol. 166, pp. 7-10. https://doi.org/10.1140/epjst/e2009-00869-y
  9. Brunet, P., Eggers, J. and Deegan, R. D., 2009, "Motion of a Drop Driven by Substrate Vibrations," Eur. Phys. J. Special Topics, Vol. 166, pp. 11-14. https://doi.org/10.1140/epjst/e2009-00870-6
  10. Hong, F. J., Jiang, D. D. and Cheng, P., 2012, "Frequency-Dependent Resonance and Asymmetric Droplet Oscillation Under AC Electrowetting on Coplanar Electrodes," J. Micromech. Microeng, Vol. 22, pp. 1-9.
  11. Oh, J. M., Ko, S. H. and Kang, K. H., 2008, "Shape Oscillation of a Drop in AC Electowetting," Langmuir, Vol. 24, pp. 8379-8386. https://doi.org/10.1021/la8007359
  12. McHale, G., Elliott, S. J., Newton, M. I., Herbertson, D. L. and Esmer, K., 2009, "Evitation- Free Vibrated Droplets: Resonant Oscillations of Liquid Marbles," Langmuir, Vol. 25, pp. 529-533. https://doi.org/10.1021/la803016f
  13. Langley, K. R. and Sharp, J. S., 2010, "Microtextured Surfaces With Gradient Wetting Properties," Langmuir, Vol. 26, pp. 18349-18356 https://doi.org/10.1021/la1036212
  14. Depaoli, D. W., Feng, J. Q., Basaran, O. A. and Scott, T. C., 1995, "Hysteresis in Forced Oscillations of Pendant Drops," Phys. Fluids, Vol. 7, pp. 1181-1183. https://doi.org/10.1063/1.868576
  15. Kim, H. Y., 2004, "Drop Fall-Off from the Vibrating Ceiling," Phys. Fluids, Vol. 14, p. 474.
  16. Brunet, P., Eggers, J. and Deegan, R. D., 2007, "Vibration-Induced Climbing of Drops," Phys. Rev. Lett, Vol. 99, pp. 144501-1-4. https://doi.org/10.1103/PhysRevLett.99.144501
  17. Matsumoto, T., Fujii, H., Ueda, T., Kamai, M. and Nogi, K., 2005, "Measurement of Surface Tension of Molten Copper Using the Free-Fall Oscillating Drop Method," Meas. Sci. Technol, Vol. 16, pp. 432-437. https://doi.org/10.1088/0957-0233/16/2/014
  18. Yamakita, S., Matsui, Y. and Shiokawa, S., 1999, "New Method for Measurement of Contact Angle (Droplet Free Vibration Frequency Method)," Jpn. J. Appl. Phys, Vol. 38, pp. 3127-3130. https://doi.org/10.1143/JJAP.38.3127
  19. Strani, M. and Sabetta, F., 1984, "Free Vibrations of a Drop in Partial Contact with a Solid Support," J. Fluid. Mech, Vol. 141, pp. 233-247. https://doi.org/10.1017/S0022112084000811