DOI QR코드

DOI QR Code

Synthesis and Characterization of 1-D BiSI and 2-D BiOI Nanostructures

  • Lee, Juheon (Department of Chemistry, Yeungnam University) ;
  • Min, Bong-Ki (Center for Research Facilities, Yeungnam University) ;
  • Cho, Insu (Department of Chemistry, Yeungnam University) ;
  • Sohn, Youngku (Department of Chemistry, Yeungnam University)
  • 투고 : 2012.10.09
  • 심사 : 2012.12.08
  • 발행 : 2013.03.20

초록

We have prepared 1-D BiSI and 2-D BiOI nanostructures, and characterized them by scanning electron microscopy, transmission electron microscopy (TEM), X-ray diffraction crystallography, thermogravimetric analysis/differential scanning calorimetry, and UV-visible absorption. Here, we first report clear HR-TEM image of BiSI. In addition, we first found that the growth direction of BiSI is [12-1] plane, with the neighboring distance of 0.30 nm. The crystal structures of BiSI and BiOI are found to be orthorhombic (Pnam) and tetragonal (P4/nmm), respectively. The absorption band gaps of BiSI and BiOI are measured to be 1.55 and 1.92 eV, respectively. Our study could further highlight the applications of V-VI-VII compounds.

키워드

참고문헌

  1. Horak, E.; Cermak, J.; Czech, K. J. Phys. B 1965, 15, 536.
  2. Audzijonis, S.; Mykolaitiene, A.; Grigas, N.; J. Ferroelectrics 1996, 77, 181.
  3. Whatmore, R. W. Rep. Prog. Phys. 1986, 49, 1335. https://doi.org/10.1088/0034-4885/49/12/002
  4. Audzijonis, A.; Gaigalas, G.; Zigas, L.; Pauliukasa, A.; Zaltauskas, R.; Cerskus, A.; Narusis J.; Kvedaravicius, A. Physica B 2007, 391, 22. https://doi.org/10.1016/j.physb.2006.08.048
  5. Audzijonis, A.; Zaltauskas, R.; Sereika, R.; Zigas, L.; Reza, A. J. Phys. Chem. Solids 2010, 71, 884. https://doi.org/10.1016/j.jpcs.2010.03.042
  6. Su, X.; Zhang, G.; Liu, T.; Liu, Y.; Qin, J.; Chen, C. Russ. J. Inorg. Chem. 2006, 51, 1864. https://doi.org/10.1134/S0036023606120047
  7. Fang, F.; Linga, C.; Li-Ming, W. Chinese J. Struct. Chem. 2009, 28, 1399.
  8. Fa, W. J.; Li, P. J.; Zhang, Y. G.; Guo, L. L.; Guo, J. F.; Yang, F. L. Advanced Materials Research 2011, 1919, 236.
  9. Zhu, L. Y.; Xie, Y.; Zheng, X. W.; Yin, X.; Tian, X. B. Inorg. Chem. 2001, 41, 4560.
  10. Grigas, J.; Talik, E.; Adamiec, M.; Lazauskas, V.; Nelkinas, V. J. Electron Spectrosc. Rel. Phenom. 2006, 153, 22. https://doi.org/10.1016/j.elspec.2006.06.001
  11. Arivuoli, D.; Gnanam, F. D.; Ramsamy, P. J. Mater. Sci. 1986, 21, 2835. https://doi.org/10.1007/BF00551498
  12. Wang, W.; Wang, S. Y.; Liu, M. Materials Research Bulletin 2005, 40, 1781. https://doi.org/10.1016/j.materresbull.2005.05.010
  13. Kumar, R. R.; Raman, G.; Gnanam, F. D. J. Mater. Sci. 1989, 24, 4531. https://doi.org/10.1007/BF00544540
  14. Wang, W. D.; Huang, F. Q.; Lin, X. P.; Yang, J. H. Catal. Commun. 2008, 9, 8. https://doi.org/10.1016/j.catcom.2007.05.014
  15. An, H. Z.; Du, Y.; Wang, T. M.; Wang, C.; Hao, W. C.; Zhang, J. Y. Rare Metals 2008, 27, 243. https://doi.org/10.1016/S1001-0521(08)60123-0
  16. Zhao, K.; Zhang, X.; Zhang, L. Z. Electrochem. Commun. 2009, 11, 612. https://doi.org/10.1016/j.elecom.2008.12.041
  17. Henle, J.; Simon, P.; Frenzel, A.; Scholz, S.; Kaskel, S. Chem. Mater. 2007, 19, 366. https://doi.org/10.1021/cm061671k
  18. Zhang, X.; Zhang, L. Z.; Xie, T. F.; Wang, D. J. J. Phys. Chem. C 2009, 113, 7371. https://doi.org/10.1021/jp900812d
  19. Chang, X. F.; Huang, J.; Tan, Q. Y.; Wang, M.; Ji, G. B.; Deng, S. B.; Yu, G. Catal. Commun. 2009, 10, 1957. https://doi.org/10.1016/j.catcom.2009.06.023
  20. Zhang, X.; Ai, Z. H.; Jia, F. L.; Zhang, L. Z. J. Phys. Chem. C 2008, 112, 747. https://doi.org/10.1021/jp077471t
  21. Xiao, X.; Zhang, W. D. J. Mater. Chem. 2010, 20, 5866. https://doi.org/10.1039/c0jm00333f
  22. Lei, Y. Q.; Wang, G. H.; Song, S. Y.; Fan, W. Q.; Pang, M.; Tang, J. K.; Zhang, H. J. Dalton Trans. 2010, 39, 3273. https://doi.org/10.1039/b922126c
  23. Xia, J. X.; Yin, S.; Li, H. M.; Xu, H.; Yan, Y. S.; Qi, Z. Langmuir 2011, 27, 1200. https://doi.org/10.1021/la104054r
  24. Zhang, K. L.; Liu, C. M.; Huang, F. Q.; Zheng, C.; Wang, W. D. Appl. Catal., B 2006, 68, 125. https://doi.org/10.1016/j.apcatb.2006.08.002
  25. Song, L.; Zhang, S.; Wei, Q. Ind. Eng. Chem. Res. 2012, 51, 1193. https://doi.org/10.1021/ie201753a
  26. Chang, X.; Huang, J.; Cheng, C.; Sui, Q.; Sha, W.; Ji, G.; Deng, S.; Yu, G. Catal. Commun. 2010, 11, 460. https://doi.org/10.1016/j.catcom.2009.11.023
  27. Cao, J.; Xu, B.; Luo, B.; Lin, H.; Chen, S. Catal. Commun. 2011, 13, 63. https://doi.org/10.1016/j.catcom.2011.06.019
  28. Xia, J.; Yina, S.; Li, H.; Xub, H.; Xua, L.; Zhang, Q. Colloid Surface A 2011, 387, 23. https://doi.org/10.1016/j.colsurfa.2011.07.023
  29. Yu, C.; Fan, C.; Yu, J. C.; Zhou, W.; Yang, K. Mater. Res. Bull. 2011, 46, 140. https://doi.org/10.1016/j.materresbull.2010.08.013
  30. Kramer, V. J. Therm. Anal. 1979, 16, 295. https://doi.org/10.1007/BF01910692
  31. Zhang, Z.; Wang, W.; Wang, L.; Sun, S. ACS Appl. Mater. Interfaces 2012, 4, 593597. https://doi.org/10.1021/am2017199

피인용 문헌

  1. Influence of solvothermal synthesis conditions in BiSI nanostructures for application in ionizing radiation detectors vol.3, pp.2, 2016, https://doi.org/10.1088/2053-1591/3/2/025012
  2. Research Update: Bismuth-based perovskite-inspired photovoltaic materials vol.6, pp.8, 2018, https://doi.org/10.1063/1.5029484
  3. Triple‐Mode Bi2WO6/Pg‐C3N4@rGO Core‐Shell Synergistic Effect with Enhanced Light‐induced Photocatalytic Activity vol.40, pp.3, 2013, https://doi.org/10.1002/bkcs.11675
  4. Bismuth chalcohalide-based nanocomposite for application in ionising radiation detectors vol.31, pp.22, 2013, https://doi.org/10.1088/1361-6528/ab7675
  5. Solution Growth of BiSI Nanorod Arrays on a Tungsten Substrate for Solar Cell Application vol.8, pp.35, 2020, https://doi.org/10.1021/acssuschemeng.0c04532
  6. Bi 13 S 18X2 -Based Solar Cells ( X = Cl, Br, I): Photoelectric Behavior and Photovoltaic Performance vol.15, pp.3, 2021, https://doi.org/10.1103/physrevapplied.15.034040
  7. Piezoelectric A15B16C17 Compounds and Their Nanocomposites for Energy Harvesting and Sensors: A Review vol.14, pp.22, 2021, https://doi.org/10.3390/ma14226973
  8. High Gain Solution‐Processed Carbon‐Free BiSI Chalcohalide Thin Film Photodetectors vol.31, pp.52, 2013, https://doi.org/10.1002/adfm.202104788