References
- P. G. Casazza, Every frames is a sum of three (but not two) orthonormal bases- and other frame representations, J. Fourier Anal. Appl., 4(1998), 727-732. https://doi.org/10.1007/BF02479676
- P. G. Casazza and G. Kutyniok, Frames of subspaces, Contemp. Math., 345(2004), 87-113. https://doi.org/10.1090/conm/345/06242
- O. Christensen, An Introduction to Frames and Riesz Bases, Birkhauser, Boston, 2003.
- O. Christensen and Y. C. Eldar, Oblique dual frames and shift invariant-spaces, Appl. Comput. Harmon. Anal., 17(2004), 48-68. https://doi.org/10.1016/j.acha.2003.12.003
- R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 72(1952), 341-366. https://doi.org/10.1090/S0002-9947-1952-0047179-6
- M. Fornasier, Decompositions of Hibert space: local construction of global frames, Proc. Int. Conf. On Constructive Function Theory, varna(2002), B. Bojanov Ed., DARBA, Sofia, 2003, 275-281.
- S. Li and H. Ogawa, Pseudoframes for subspaces with applications, J. Fourier Anal. Appl., 10(2004), 409-431. https://doi.org/10.1007/s00041-004-3039-0
- A. Najati, M. H. Faroughi and A. Rahimi, G-frames and stability of g-frames in Hilbert spaces, Methods Funct. Anal. Topology, 4(2008), 271-286.
- S. Obeidat, S. Samarah, P. G. Casazza and J. C. Tremain, Sums of Hilbert Space frames, J. Math. Anal. Appl., 351(2009), 579-585. https://doi.org/10.1016/j.jmaa.2008.10.040
- W. Sun, G-frames and g-Riesz bases, J. Math. Anal. Appl., 322(2006), 437-452. https://doi.org/10.1016/j.jmaa.2005.09.039