G-frames as Sums of Some g-orthonormal Bases

Mohammad Reza Abdollahpour and Abbas Najati*
Department of Mathematics, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran
e-mail: mrabdollahpour@yahoo.com and a.nejati@yahoo.com

Abstract. In this paper we show that a g-frame for a Hilbert space \mathcal{H} can be written as a linear combination of two g-orthonormal bases for \mathcal{H} if and only if it is a g-Riesz basis for \mathcal{H}. Also, we show that every g-frame for a Hilbert space \mathcal{H} is a multiple of a sum of three g-orthonormal bases for \mathcal{H}.

1. Introduction

The concept of frame was introduced by Duffin and Schaeffer [5] in 1952 while studying some problems in nonharmonic Fourier analysis. Let \mathcal{H} be a Hilbert space. A countable family $\left\{f_{i}\right\}_{i=1}^{\infty} \subseteq \mathcal{H}$ is a frame for \mathcal{H}, if there exist two positive constants A, B such that

$$
\begin{equation*}
A\|f\|^{2} \leq \sum_{i=1}^{\infty}\left|\left\langle f, f_{i}\right\rangle\right|^{2} \leq B\|f\|^{2} \tag{1.1}
\end{equation*}
$$

for all $f \in H$. If in (1.1), the right hand inequality holds for all $f \in \mathcal{H}$ then $\left\{f_{i}\right\}_{i=1}^{\infty}$ is called a Bessel sequence. In [9] the authors give a necessary and sufficient conditions on Bessel sequences $\left\{f_{i}\right\}_{i=1}^{\infty}$ and $\left\{g_{i}\right\}_{i=1}^{\infty}$ and bounded operators L_{1} and L_{2} on a Hilbert space \mathcal{H} such that $\left\{L_{1} f_{i}+L_{2} g_{i}\right\}_{i=1}^{\infty}$ is a frame for \mathcal{H}, in other words, under some conditions sum of two Bessel sequences can be a frame. Also they show that, one can get a new frame by adding a frame to any of its dual frames. Casazza proved that every frame for a Hilbert space \mathcal{H} can be written as a sum of three (but not two) orthonormal bases [1].

Frames in Hilbert spaces have several generalizations [2, 7, 6, 4]. But the concept of g-frames, the most recent generalization of frames, introduced by Sun [10].

Throughout this paper, \mathcal{H} is a separable Hilbert space and $\left\{\mathcal{H}_{i}\right\}_{i \in I}$ is a sequence of separable Hilbert spaces, where I is a countable subset of \mathbb{N}.

Definition 1.1. We call a sequence $\left\{\Lambda_{i} \in B\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in I\right\}$ a g-frame for \mathcal{H} with

[^0]Received May 14, 2011; accepted September 28, 2011.
2010 Mathematics Subject Classification: Primary 41A58, 42C15 .
Key words and phrases: g-Bessel sequence, g-frame, g-orthonormal basis, g-Riesz basis.
respect to $\left\{\mathcal{H}_{i}\right\}_{i \in I}$, if there exist two positive constants A and B such that

$$
\begin{equation*}
A\|f\|^{2} \leq \sum_{i \in I}\left\|\Lambda_{i} f\right\|^{2} \leq B\|f\|^{2} \tag{1.2}
\end{equation*}
$$

for all $f \in \mathcal{H}$. We call A and B the lower and upper g-frame bounds, respectively. We call $\left\{\Lambda_{i}\right\}_{i \in I}$ a tight g-frame, if $A=B$ and Parseval g-frame, if $A=B=1$. The sequence $\left\{\Lambda_{i} \in B\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in I\right\}$ is called the g-Bessel sequence if the right hand inequality in (1.2) holds for all $f \in \mathcal{H}$.

Let $\Lambda_{i} \in B\left(\mathcal{H}, \mathcal{H}_{i}\right)$ be given for all $i \in I$. Let us define the set

$$
\left(\sum_{i \in I} \oplus \mathcal{H}_{i}\right)_{l_{2}}=\left\{\left\{f_{i}\right\}: f_{i} \in \mathcal{H}_{i}, \sum_{i \in I}\left\|f_{i}\right\|^{2}<\infty\right\}
$$

with this inner product given by $\left\langle\left\{f_{i}\right\},\left\{g_{i}\right\}\right\rangle=\sum_{i \in I}\left\langle f_{i}, g_{i}\right\rangle$. It is clear that $\left(\sum_{i \in I} \oplus \mathcal{H}_{i}\right)_{l_{2}}$ is a Hilbert space with respect to the poitwise operations. It is proved in [8], if $\left\{\Lambda_{i} \in B\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in I\right\}$ is a g-Bessel sequence for \mathcal{H} then the operator

$$
T:\left(\sum_{i \in I} \oplus \mathcal{H}_{i}\right)_{l_{2}} \rightarrow \mathcal{H}
$$

defined by

$$
\begin{equation*}
T\left(\left\{f_{i}\right\}\right)=\sum_{i \in I} \Lambda_{i}^{*}\left(f_{i}\right) \tag{1.3}
\end{equation*}
$$

is well defined and bounded and its adjoint is $T^{*} f=\left\{\Lambda_{i} f\right\}_{i \in I}$. Also, a sequence $\left\{\Lambda_{i} \in B\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in I\right\}$ is a g-frame if and only if the operator T defined in (1.3), is a bounded and onto operator. We call the operators T and T^{*}, synthesis and analysis operators, respectively. Also in [10], it is proved that, if $\left\{\Lambda_{i} \in B\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in I\right\}$ is a g-frame for \mathcal{H}, then the operator

$$
S: \mathcal{H} \rightarrow \mathcal{H}, \quad S f=\sum_{i \in I} \Lambda_{i}^{*} \Lambda_{i} f
$$

is a positive bounded invertible operator and every $f \in \mathcal{H}$ has the expansions

$$
f=\sum_{i \in I} S^{-1} \Lambda_{i}^{*} \Lambda_{i} f=\sum_{i \in I} \Lambda_{i}^{*} \Lambda_{i} S^{-1} f
$$

The operator S is called the g-frame operator of $\left\{\Lambda_{i}\right\}_{i \in I}$. If $\left\{\Lambda_{i}\right\}_{i \in I}$ is a g-Bessel sequence then $S=T T^{*}$.

Definition 1.2. A sequence $\left\{\Lambda_{i} \in B\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in I\right\}$ is called
(1) a g-Riesz basis for \mathcal{H} with respect to $\left\{\mathcal{H}_{i}\right\}_{i \in I}$, if there exist two positive constants A and B such that for any finite subset $F \subseteq I$ and $g_{i} \in \mathcal{H}_{i}$

$$
A \sum_{i \in F}\left\|g_{i}\right\|^{2} \leq\left\|\sum_{i \in F} \Lambda_{i}^{*} g_{i}\right\|^{2} \leq B \sum_{i \in F}\left\|g_{i}\right\|^{2}
$$

and $\left\{\Lambda_{i} \in B\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in I\right\}$ is g-complete, i.e.,

$$
\left\{f \mid \Lambda_{i} f=0, i \in I\right\}=\{0\}
$$

(2) a g-orthonormal basis for \mathcal{H} with respect to $\left\{\mathcal{H}_{i}\right\}_{i \in I}$, if for all $f \in \mathcal{H}$, $\sum_{i \in I}\left\|\Lambda_{i} f\right\|^{2}=\|f\|^{2}$, and

$$
\begin{equation*}
\left\langle\Lambda_{i}^{*} g_{i}, \Lambda_{j}^{*} g_{j}\right\rangle=\delta_{i j}\left\langle g_{i}, g_{j}\right\rangle, \quad g_{i} \in \mathcal{H}_{i}, g_{j} \in \mathcal{H}_{j}, \quad i, j \in I . \tag{1.4}
\end{equation*}
$$

We call condition (1.4), the orthogonality condition of g-orthonormal basis $\left\{\Lambda_{i}\right\}_{i \in I}$.

2. Main results

The following theorem is proved in [10] and we use this result in the rest of paper.

Theorem 2.1. Let $\left\{\Lambda_{i} \in B\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in I\right\}$ be a sequence of bounded operators and $\left\{g_{i, j}\right\}_{j \in J_{i}}$ be an orthonormal basis for \mathcal{H}_{i} where J_{i} is a subset of \mathbb{Z} and $i \in I$. Then $\left\{\Lambda_{i}\right\}_{i \in I}$ is a g-frame (resp. g-Riesz basis, g-orthonormal basis) for \mathcal{H} if and only if $\left\{\Lambda_{i}^{*} g_{i, j}\right\}_{i \in I, j \in J_{i}}$ is a frame (resp. Riesz basis, orthonormal basis) for \mathcal{H}.
Proposition 2.2. $\left\{\Lambda_{i}\right\}_{i \in I}$ is a g-frame for \mathcal{H} with respect to $\left\{\mathcal{H}_{i}\right\}_{i \in I}$ if and only if there is a g-orthonormal basis $\left\{Q_{i}\right\}_{i \in I}$ and a bounded onto operator T on \mathcal{H} such that $\Lambda_{i}=Q_{i} T^{*}$ for all $i \in I$.
Proof. Let $\left\{g_{i, j}\right\}_{i \in J_{i}}$ be an orthonormal basis for Hilbert space \mathcal{H}_{i}. If $\left\{\Lambda_{i}\right\}_{i \in I}$ is a g-frame for \mathcal{H} then by Theorem $2.1,\left\{\Lambda_{i}^{*} g_{i, j}\right\}_{i \in I, j \in J_{i}}$ is a frame for \mathcal{H} and we have

$$
\Lambda_{i} f=\sum_{j \in J_{i}}\left\langle f, \Lambda_{i}^{*} g_{i, j}\right\rangle g_{i, j},
$$

for all $f \in \mathcal{H}$. We can take an orthonormal basis $\left\{v_{i, j}\right\}_{i \in I, j \in J_{i}}$ for \mathcal{H} and surjective bounded operator $T: \mathcal{H} \rightarrow \mathcal{H}$ so that $\Lambda_{i}^{*} g_{i, j}=T v_{i, j}$ [3, Theorem 5.5.5]. Let us define

$$
Q_{i}: \mathcal{H} \rightarrow \mathcal{H}_{i}, \quad Q_{i} f=\sum_{j \in J_{i}}\left\langle f, v_{i, j}\right\rangle g_{i, j} .
$$

Then $\Lambda_{i} f=Q_{i} T^{*} f$ for all $f \in \mathcal{H}$ and $i \in I$ and again Theorem 2.1 implies that $\left\{Q_{i}\right\}_{i \in I}$ is a g-orthonormal basis for \mathcal{H}. Conversely, if $\left\{Q_{i}\right\}_{i \in I}$ is a g-orthonormal basis for \mathcal{H} and $\Lambda_{i}=Q_{i} T^{*}$ for some bounded onto operator T, then we can find
orthonormal basis $\left\{u_{i, j}\right\}_{i \in I, j \in J_{i}}$ for \mathcal{H} such that $Q_{i} f=\sum_{j \in J_{i}}\left\langle f, u_{i, j}\right\rangle g_{i, j}$ for all $f \in \mathcal{H}$. Since

$$
\Lambda_{i} f=Q_{i} T^{*} f=\sum_{j \in J_{i}}\left\langle T^{*} f, u_{i, j}\right\rangle g_{i, j}=\sum_{j \in J_{i}}\left\langle f, T u_{i, j}\right\rangle g_{i, j}
$$

by Theorem 2.1, $\left\{\Lambda_{i}\right\}_{i \in I}$ is a g-frame for \mathcal{H}.
We mention that, if $\left\{e_{n}\right\}_{n=1}^{\infty}$ is an orthonormal basis for \mathcal{H} then the orthonormal bases for \mathcal{H} are precisely the sets $\left\{U e_{n}\right\}_{n=1}^{\infty}$, where $U: \mathcal{H} \rightarrow \mathcal{H}$ is a unitary operator [3]. Using this fact and Theorem 2.1, we have the same situation for g-frames.
Proposition 2.3. Let $\left\{Q_{i}\right\}_{i \in I}$ be a g-orthonormal basis for \mathcal{H}, with respect to $\left\{\mathcal{H}_{i}\right\}_{i \in I}$. Then $\left\{\Lambda_{i} \in B\left(\mathcal{H}, \mathcal{H}_{i}\right)\right\}_{i \in I}$ is a g-orthonormal basis for \mathcal{H} if and only if there is a unitary operator $T: \mathcal{H} \rightarrow \mathcal{H}$ such that $\Lambda_{i}=Q_{i} T$ for all $i \in I$.
Proof. Suppose that $\left\{\Lambda_{i}\right\}_{i \in I}$ is a g-orthonormal basis for \mathcal{H}. If $\left\{g_{i, j}\right\}_{i \in J_{i}}$ is an orthonormal basis for \mathcal{H}_{i}, then $\left\{\Lambda_{i}^{*} g_{i, j}\right\}_{i \in I, j \in J_{i}}$ and $\left\{Q_{i}^{*} g_{i, j}\right\}_{i \in I, j \in J_{i}}$ are orthonormal bases for \mathcal{H}. So $\Lambda_{i}^{*} g_{i, j}=T_{1} Q_{i}^{*} g_{i, j}$, where T_{1} is a unitary operator. We have

$$
\begin{aligned}
\Lambda_{i} f & =\sum_{j \in J_{i}}\left\langle f, \Lambda_{i}^{*} g_{i, j}\right\rangle g_{i, j}=\sum_{j \in J_{i}}\left\langle f, T_{1} Q_{i}^{*} g_{i, j}\right\rangle g_{i, j} \\
& =\sum_{j \in J_{i}}\left\langle T_{1}^{*} f, Q_{i}^{*} g_{i, j}\right\rangle g_{i, j}=Q_{i} T_{1}^{*} f
\end{aligned}
$$

for all $f \in \mathcal{H}$ and $i \in I$. One can consider $T=T_{1}^{*}$. Then T is unitary and $\Lambda_{i}=Q_{i} T$ for all $i \in I$. For the inverse implication, assume that there is a unitary operator T and $\Lambda_{i}=Q_{i} T$, for $i \in I$. Then

$$
\left\langle\Lambda_{i}^{*} g_{i}, \Lambda_{j}^{*} g_{j}\right\rangle=\left\langle T^{*} Q_{i}^{*} g_{i}, T^{*} Q_{j}^{*} g_{j}\right\rangle=\left\langle Q_{i}^{*} g_{i}, Q_{j}^{*} g_{j}\right\rangle=\delta_{i j}\left\langle g_{i}, g_{j}\right\rangle
$$

for all $i, j \in I$, and $g_{i} \in \mathcal{H}_{i}, g_{j} \in \mathcal{H}_{j}$. Also we have

$$
\sum_{i \in I}\left\|\Lambda_{i} f\right\|^{2}=\sum_{i \in I}\left\|Q_{i} T f\right\|^{2}=\|T f\|^{2}=\|f\|^{2}, \quad f \in \mathcal{H}
$$

So $\left\{\Lambda_{i}\right\}_{i \in I}$ is a g-orthonormal basis for \mathcal{H}.
Proposition 2.4. A g-frame $\left\{\Lambda_{i}\right\}_{i \in I}$ for \mathcal{H} can be written as a real linear combination of two g-orthonormal bases for \mathcal{H} if and only if $\left\{\Lambda_{i}\right\}_{i \in I}$ is a g-Riesz basis for \mathcal{H}.
Proof. Let $\left\{\Lambda_{i}\right\}_{i \in I}$ be a g-Riesz basis for \mathcal{H}. Then there is a g-orthonormal basis $\left\{\Lambda_{i}\right\}_{i \in I}$ for \mathcal{H} and a bounded invertible operator T on \mathcal{H} such that $\Lambda_{i}=Q_{i} T$, for each $i \in I[10]$. Since T is invertible, there are unitary operators U_{1}, U_{2} such that $T=a_{1} U_{1}+a_{2} U_{2}$ for some $a_{1}, a_{2} \in \mathbb{R}[1]$. So

$$
\Lambda_{i}=a_{1} Q_{i} U_{1}+a_{2} Q_{i} U_{2}, \quad i \in I
$$

Proposition 2.3 implies that $\left\{Q_{i} U_{1}\right\}_{i \in I}$ and $\left\{Q_{i} U_{2}\right\}_{i \in I}$ are g-orthonormal bases.
Conversely, let $\Lambda_{i}=a_{1} Q_{i}+a_{2} Q_{i}^{\prime}$ for $i \in I$, where $\left\{Q_{i}\right\}_{i \in I}$ and $\left\{Q_{i}^{\prime}\right\}_{i \in I}$ are g orthonormal bases. Again by Proposition 2.3, there is a unitary operator $U: \mathcal{H} \rightarrow \mathcal{H}$ such that $Q_{i}^{\prime}=Q_{i} U$ and $\Lambda_{i}=Q_{i}\left(a_{1} I+a_{2} U\right)$ for $i \in I$ and for some $a_{1}, a_{2} \in \mathbb{R}$. Since the operator $a_{1} I+a_{2} U$ is invertible, $\left\{\Lambda_{i}\right\}_{i \in I}$ is a g-Riesz basis for \mathcal{H}.

It is proved in [1], if $\left\{x_{i}\right\}_{i \in I}$ is a frame for \mathcal{H} with upper frame bound B, then for every $\varepsilon>0$ there are orthonormal bases $\left\{f_{i}\right\}_{i \in I},\left\{g_{i}\right\}_{i \in I}$ and $\left\{h_{i}\right\}_{i \in I}$ for \mathcal{H} and a constant $a=B(1+\varepsilon)$ so that

$$
x_{i}=a\left(f_{i}+g_{i}+h_{i}\right), i \in I
$$

We show g-frames have the similar property.
Theorem 2.5. Let $\left\{\Lambda_{i} \in B\left(\mathcal{H}, \mathcal{H}_{i}\right)\right\}_{i \in I}$ be a g-frame for \mathcal{H} with bounds $0<A \leq B$, with respect to $\left\{\mathcal{H}_{i}\right\}_{i \in I}$. Then for every $\varepsilon>0$, there are g-orthonormal bases $\left\{\Gamma_{i} \in B\left(\mathcal{H}, \mathcal{H}_{i}\right)\right\}_{i \in I},\left\{\Phi_{i} \in B\left(\mathcal{H}, \mathcal{H}_{i}\right)\right\}_{i \in I}$ and $\left\{\Theta_{i} \in B\left(\mathcal{H}, \mathcal{H}_{i}\right)\right\}_{i \in I}$ for \mathcal{H} and a constant $a=B(1+\varepsilon)$ such that

$$
\Lambda_{i} f=a\left(\Gamma_{i} f+\Phi_{i} f+\Theta_{i} f\right), i \in I, f \in \mathcal{H}
$$

Proof. Let $\left\{g_{i, j}\right\}_{i \in J_{i}}$ be an orthonormal basis for \mathcal{H}_{i}. Then $\left\{\Lambda_{i}^{*} g_{i, j}\right\}_{i \in I, j \in J_{i}}$ is a frame for \mathcal{H} and $\Lambda_{i} f=\sum_{j \in J_{i}}\left\langle f, \Lambda_{i}^{*} g_{i, j}\right\rangle g_{i, j}$, for every $f \in \mathcal{H}$. So for given $\varepsilon>0$, there are orthonormal bases $\left\{f_{i j}\right\}_{i \in I, j \in J_{i}},\left\{e_{i j}\right\}_{i \in I, j \in J_{i}}$ and $\left\{h_{i j}\right\}_{i \in I, j \in J_{i}}$ for \mathcal{H} such that

$$
\begin{equation*}
\Lambda_{i} f=\sum_{j \in J_{i}}\left\langle f, \Lambda_{i}^{*} g_{i, j}\right\rangle g_{i, j}=\sum_{j \in J_{i}}\left\langle f, a\left(f_{i j}+e_{i j}+h_{i j}\right)\right\rangle g_{i, j} \tag{2.1}
\end{equation*}
$$

for each $f \in \mathcal{H}$ and $a=B(1+\varepsilon)$. For given $f \in \mathcal{H}$, we define $\Gamma_{i} f=\sum_{j \in J_{i}}\left\langle f, f_{i j}\right\rangle g_{i, j}$ and $\Phi_{i} f=\sum_{j \in J_{i}}\left\langle f, e_{i j}\right\rangle g_{i, j}$ and $\Theta_{i} f=\sum_{j \in J_{i}}\left\langle f, h_{i j}\right\rangle g_{i, j}$. Then (2.1) implies that

$$
\Lambda_{i} f=a\left(\Gamma_{i} f+\Phi_{i} f+\Theta_{i} f\right), i \in I, f \in \mathcal{H}
$$

We show that $\left\{\Gamma_{i}\right\}_{i \in I},\left\{\Phi_{i}\right\}_{i \in I}$ and $\left\{\Theta_{i}\right\}_{i \in I}$ are g-orthonormal bases for \mathcal{H}. If $g_{i} \in \mathcal{H}_{i}$, then $\Gamma_{i}^{*} g_{i}=\sum_{j \in J_{i}}\left\langle g_{i}, g_{i, j}\right\rangle f_{i j}$ and it is easy to show that

$$
\left\langle\Gamma_{i}^{*} g_{i}, \Gamma_{i}^{*} g_{j}\right\rangle=\delta_{i j}\left\langle g_{i}, g_{j}\right\rangle, g_{i} \in \mathcal{H}_{i}, g_{j} \in \mathcal{H}_{j}, i, j \in I
$$

and

$$
\sum_{i \in I}\left\|\Gamma_{i} f\right\|^{2}=\sum_{i \in I}\left\|\sum_{j \in J_{i}}\left\langle f, f_{i j}\right\rangle g_{i, j}\right\|^{2}=\sum_{i \in I} \sum_{j \in J_{i}}\left|\left\langle f, f_{i j}\right\rangle\right|^{2}=\|f\|^{2}
$$

This completes the proof.
As the following example shows, in general, a g-frame cannot be represented as a sum of two g-orthonormal bases.

Example 2.6. Let $\left\{\Theta_{i} \in B\left(\mathcal{H}, \mathcal{H}_{i}\right)\right\}_{i \in \mathbb{N}}$ be a g-orthonormal for \mathcal{H}, with respect to $\left\{\mathcal{H}_{i}\right\}_{i \in \mathbb{N}}$ and $\operatorname{dim}\left(\mathcal{H}_{1}\right)<\infty$. We consider the g-frame $\left\{\Lambda_{i} \in B\left(\mathcal{H}, \mathcal{H}_{i}\right)\right\}_{i \in \mathbb{N}}$ by $\Lambda_{1}=0$ and $\Lambda_{i+1}=\Theta_{i}$ for $i \in \mathbb{N}$. Assume that there are g-orthonormal bases $\left\{\Gamma_{i} \in\right.$ $\left.B\left(\mathcal{H}, \mathcal{H}_{i}\right)\right\}_{i \in \mathbb{N}},\left\{\Phi_{i} \in B\left(\mathcal{H}, \mathcal{H}_{i}\right)\right\}_{i \in \mathbb{N}}$ and scalars $c, d \neq 0$ such that $\Lambda_{i}=c \Gamma_{i}+d \Psi_{i}$ for all $i \in \mathbb{N}$. Then, $0=\Lambda_{1}=c \Gamma_{1}+d \Psi_{1}$. Therefore

$$
\operatorname{span}\left\{\Gamma_{1}^{*}\left(\mathcal{H}_{1}\right)\right\}=\operatorname{span}\left\{\Psi_{1}^{*}\left(\mathcal{H}_{1}\right)\right\}
$$

since $\left\{\Gamma_{i}\right\}_{i \in I}$ and $\left\{\Phi_{i}\right\}_{i \in I}$ are g-complete, a result of [8] shows that

$$
\overline{\operatorname{span}}\left\{\Gamma_{i}^{*}\left(\mathcal{H}_{i}\right)\right\}_{i \in \mathbb{N}}=\overline{\operatorname{span}}\left\{\Psi_{i}^{*}\left(\mathcal{H}_{i}\right)\right\}_{i \in \mathbb{N}}=\mathcal{H}
$$

The orthogonality condition of g-orthonormal bases $\left\{\Gamma_{i}\right\}_{i \in \mathbb{N}}$ and $\left\{\Phi_{i}\right\}_{i \in \mathbb{N}}$ implies

$$
\overline{\operatorname{span}}\left\{\Gamma_{i}^{*}\left(\mathcal{H}_{i}\right)\right\}_{i \geq 2}=\overline{\operatorname{span}}\left\{\Psi_{i}^{*}\left(\mathcal{H}_{i}\right)\right\}_{i \geq 2} \neq \mathcal{H}
$$

But

$$
\overline{\operatorname{span}}\left\{\Lambda_{i}^{*}\left(\mathcal{H}_{i}\right)\right\}_{i \geq 2}=\overline{\operatorname{span}}\left\{\left(\bar{c} \Gamma_{i}^{*}+\bar{d} \Psi_{i}^{*}\right)\left(\mathcal{H}_{i}\right)\right\}_{i \geq 2}=\mathcal{H}
$$

and this is contradiction.
We recall that, a bounded operator $T: \mathcal{H} \rightarrow \mathcal{H}$ is a maximal partial isometry if T or its adjoint is an isometry. Next proposition shows that every g-frame can be written as a multiple of a sum of two Parseval g-frame. Note that if $\left\{\Theta_{i} \in\right.$ $\left.B\left(\mathcal{H}, \mathcal{H}_{i}\right)\right\}_{i \in I}$ is a g-orthonormal basis for \mathcal{H} and T is an isometry, then $\left\{\Theta_{i} T\right\}_{i \in I}$ is a Parseval g-frame.
Proposition 2.7. Let $\left\{\Lambda_{i} \in B\left(\mathcal{H}, \mathcal{H}_{i}\right)\right\}_{i \in I}$ be a g-frame for \mathcal{H} with respect to $\left\{\mathcal{H}_{i}\right\}_{i \in I}$. Then there are two Parseval g-frames $\left\{\Gamma_{i} \in B\left(\mathcal{H}, \mathcal{H}_{i}\right)\right\}_{i \in I}$ and $\left\{\Psi_{i} \in\right.$ $\left.B\left(\mathcal{H}, \mathcal{H}_{i}\right)\right\}_{i \in I}$ for \mathcal{H} and a scalar a such that

$$
\Lambda_{i} f=a\left(\Gamma_{i} f+\Psi_{i} f\right), i \in I, f \in \mathcal{H}
$$

Proof. By Proposition 2.2, $\Lambda_{i}=\Theta_{i} T^{*}$ for $i \in I$, where T is a bounded onto operator on \mathcal{H} and $\left\{\Theta_{i} \in B\left(\mathcal{H}, \mathcal{H}_{i}\right)\right\}_{i \in I}$ is a g-orthonormal basis for \mathcal{H}. Then

$$
T=\frac{\|T\| U}{2}\left(W+W^{*}\right)
$$

where W is a unitary and U ia a maximal partial isometry and $(U W)^{*}$ and $\left(U W^{*}\right)^{*}$ are isometries [1]. So

$$
\Lambda_{i}=\frac{\|T\|}{2} \cdot\left[\Theta_{i}(U W)^{*}+\Theta_{i}\left(U W^{*}\right)^{*}\right]
$$

for each $i \in I$. Here $\left\{\Theta_{i}(U W)^{*}\right\}_{i \in I}$ and $\left\{\Theta_{i}\left(U W^{*}\right)^{*}\right\}_{i \in I}$ are Parseval g-frames.

References

[1] P. G. Casazza, Every frames is a sum of three (but not two) orthonormal bases- and other frame representations, J. Fourier Anal. Appl., 4(1998), 727-732.
[2] P. G. Casazza and G. Kutyniok, Frames of subspaces, Contemp. Math., 345(2004), 87-113.
[3] O. Christensen, An Introduction to Frames and Riesz Bases, Birkhäuser, Boston, 2003.
[4] O. Christensen and Y. C. Eldar, Oblique dual frames and shift invariant-spaces, Appl. Comput. Harmon. Anal., 17(2004), 48-68.
[5] R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 72(1952), 341-366.
[6] M. Fornasier, Decompositions of Hibert space: local construction of global frames, Proc. Int. Conf. On Constructive Function Theory, varna(2002), B. Bojanov Ed., DARBA, Sofia, 2003, 275-281.
[7] S. Li and H. Ogawa, Pseudoframes for subspaces with applications, J. Fourier Anal. Appl., 10(2004), 409-431.
[8] A. Najati, M. H. Faroughi and A. Rahimi, G-frames and stability of g-frames in Hilbert spaces, Methods Funct. Anal. Topology, 4(2008), 271-286.
[9] S. Obeidat, S. Samarah, P. G. Casazza and J. C. Tremain, Sums of Hilbert Space frames, J. Math. Anal. Appl., 351(2009), 579-585.
[10] W. Sun, G-frames and g-Riesz bases, J. Math. Anal. Appl., 322(2006), 437-452.

[^0]: * Corresponding Author.

