KYUNGPOOK Math. J. 53(2013), 135-141 http://dx.doi.org/10.5666/KMJ.2013.53.1.135

G-frames as Sums of Some g-orthonormal Bases

MOHAMMAD REZA ABDOLLAHPOUR AND ABBAS NAJATI* Department of Mathematics, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran e-mail: mrabdollahpour@yahoo.com and a.nejati@yahoo.com

ABSTRACT. In this paper we show that a g-frame for a Hilbert space \mathcal{H} can be written as a linear combination of two g-orthonormal bases for \mathcal{H} if and only if it is a g-Riesz basis for \mathcal{H} . Also, we show that every g-frame for a Hilbert space \mathcal{H} is a multiple of a sum of three g-orthonormal bases for \mathcal{H} .

1. Introduction

The concept of frame was introduced by Duffin and Schaeffer [5] in 1952 while studying some problems in nonharmonic Fourier analysis. Let \mathcal{H} be a Hilbert space. A countable family $\{f_i\}_{i=1}^{\infty} \subseteq \mathcal{H}$ is a frame for \mathcal{H} , if there exist two positive constants A, B such that

(1.1)
$$A\|f\|^2 \le \sum_{i=1}^{\infty} |\langle f, f_i \rangle|^2 \le B\|f\|^2,$$

for all $f \in H$. If in (1.1), the right hand inequality holds for all $f \in \mathcal{H}$ then $\{f_i\}_{i=1}^{\infty}$ is called a Bessel sequence. In [9] the authors give a necessary and sufficient conditions on Bessel sequences $\{f_i\}_{i=1}^{\infty}$ and $\{g_i\}_{i=1}^{\infty}$ and bounded operators L_1 and L_2 on a Hilbert space \mathcal{H} such that $\{L_1f_i + L_2g_i\}_{i=1}^{\infty}$ is a frame for \mathcal{H} , in other words, under some conditions sum of two Bessel sequences can be a frame. Also they show that, one can get a new frame by adding a frame to any of its dual frames. Casazza proved that every frame for a Hilbert space \mathcal{H} can be written as a sum of three (but not two) orthonormal bases [1].

Frames in Hilbert spaces have several generalizations [2, 7, 6, 4]. But the concept of *g*-frames, the most recent generalization of frames, introduced by Sun [10].

Throughout this paper, \mathcal{H} is a separable Hilbert space and $\{\mathcal{H}_i\}_{i \in I}$ is a sequence of separable Hilbert spaces, where I is a countable subset of \mathbb{N} .

Definition 1.1. We call a sequence $\{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ a *g*-frame for \mathcal{H} with

* Corresponding Author.

Received May 14, 2011; accepted September 28, 2011.

²⁰¹⁰ Mathematics Subject Classification: Primary 41A58, 42C15.

Key words and phrases: g-Bessel sequence, g-frame, g-orthonormal basis, g-Riesz basis.

¹³⁵

respect to $\{\mathcal{H}_i\}_{i \in I}$, if there exist two positive constants A and B such that

(1.2)
$$A\|f\|^2 \le \sum_{i \in I} \|\Lambda_i f\|^2 \le B\|f\|^2,$$

for all $f \in \mathcal{H}$. We call A and B the lower and upper g-frame bounds, respectively. We call $\{\Lambda_i\}_{i \in I}$ a tight g-frame, if A = B and Parseval g-frame, if A = B = 1. The sequence $\{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is called the g-Bessel sequence if the right hand inequality in (1.2) holds for all $f \in \mathcal{H}$.

Let $\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i)$ be given for all $i \in I$. Let us define the set

$$\left(\sum_{i\in I}\oplus\mathcal{H}_i\right)_{l_2} = \left\{\{f_i\}: f_i\in\mathcal{H}_i, \sum_{i\in I}\|f_i\|^2 < \infty\right\}$$

with this inner product given by $\langle \{f_i\}, \{g_i\} \rangle = \sum_{i \in I} \langle f_i, g_i \rangle$. It is clear that $\left(\sum_{i \in I} \oplus \mathcal{H}_i\right)_{l_2}$ is a Hilbert space with respect to the poitwise operations. It is proved in [8], if

 $\{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is a g-Bessel sequence for \mathcal{H} then the operator

$$T:\left(\sum_{i\in I}\oplus\mathcal{H}_i\right)_{l_2}\to\mathcal{H}$$

defined by

(1.3)
$$T(\lbrace f_i \rbrace) = \sum_{i \in I} \Lambda_i^*(f_i)$$

is well defined and bounded and its adjoint is $T^*f = \{\Lambda_i f\}_{i \in I}$. Also, a sequence $\{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is a g-frame if and only if the operator T defined in (1.3), is a bounded and onto operator. We call the operators T and T^* , synthesis and analysis operators, respectively. Also in [10], it is proved that, if $\{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is a g-frame for \mathcal{H} , then the operator

$$S: \mathcal{H} \to \mathcal{H}, \quad Sf = \sum_{i \in I} \Lambda_i^* \Lambda_i f$$

is a positive bounded invertible operator and every $f \in \mathcal{H}$ has the expansions

$$f = \sum_{i \in I} S^{-1} \Lambda_i^* \Lambda_i f = \sum_{i \in I} \Lambda_i^* \Lambda_i S^{-1} f.$$

The operator S is called the g-frame operator of $\{\Lambda_i\}_{i \in I}$. If $\{\Lambda_i\}_{i \in I}$ is a g-Bessel sequence then $S = TT^*$.

Definition 1.2. A sequence $\{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is called

(1) a g-Riesz basis for \mathcal{H} with respect to $\{\mathcal{H}_i\}_{i\in I}$, if there exist two positive constants A and B such that for any finite subset $F \subseteq I$ and $g_i \in \mathcal{H}_i$

$$A\sum_{i\in F} \|g_i\|^2 \le \|\sum_{i\in F} \Lambda_i^* g_i\|^2 \le B\sum_{i\in F} \|g_i\|^2$$

and $\{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is g-complete, i.e.,

$$\{f|\Lambda_i f = 0, i \in I\} = \{0\}.$$

- (2) a g-orthonormal basis for \mathcal{H} with respect to $\{\mathcal{H}_i\}_{i \in I}$, if for all $f \in \mathcal{H}$, $\sum_{i \in I} \|\Lambda_i f\|^2 = \|f\|^2$, and
 - (1.4) $\langle \Lambda_i^* g_i, \Lambda_j^* g_j \rangle = \delta_{ij} \langle g_i, g_j \rangle, \quad g_i \in \mathcal{H}_i, \ g_j \in \mathcal{H}_j, \quad i, j \in I.$

We call condition (1.4), the orthogonality condition of g-orthonormal basis $\{\Lambda_i\}_{i \in I}$.

2. Main results

The following theorem is proved in [10] and we use this result in the rest of paper.

Theorem 2.1. Let $\{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be a sequence of bounded operators and $\{g_{i,j}\}_{j\in J_i}$ be an orthonormal basis for \mathcal{H}_i where J_i is a subset of \mathbb{Z} and $i \in I$. Then $\{\Lambda_i\}_{i\in I}$ is a g-frame (resp. g-Riesz basis, g-orthonormal basis) for \mathcal{H} if and only if $\{\Lambda_i^*g_{i,j}\}_{i\in I, j\in J_i}$ is a frame (resp. Riesz basis, orthonormal basis) for \mathcal{H} .

Proposition 2.2. $\{\Lambda_i\}_{i\in I}$ is a g-frame for \mathcal{H} with respect to $\{\mathcal{H}_i\}_{i\in I}$ if and only if there is a g-orthonormal basis $\{Q_i\}_{i\in I}$ and a bounded onto operator T on \mathcal{H} such that $\Lambda_i = Q_i T^*$ for all $i \in I$.

Proof. Let $\{g_{i,j}\}_{i \in J_i}$ be an orthonormal basis for Hilbert space \mathcal{H}_i . If $\{\Lambda_i\}_{i \in I}$ is a g-frame for \mathcal{H} then by Theorem 2.1, $\{\Lambda_i^* g_{i,j}\}_{i \in I, j \in J_i}$ is a frame for \mathcal{H} and we have

$$\Lambda_i f = \sum_{j \in J_i} \langle f, \Lambda_i^* g_{i,j} \rangle g_{i,j},$$

for all $f \in \mathcal{H}$. We can take an orthonormal basis $\{v_{i,j}\}_{i \in I, j \in J_i}$ for \mathcal{H} and surjective bounded operator $T : \mathcal{H} \to \mathcal{H}$ so that $\Lambda_i^* g_{i,j} = T v_{i,j}$ [3, Theorem 5.5.5]. Let us define

$$Q_i: \mathcal{H} \to \mathcal{H}_i, \qquad Q_i f = \sum_{j \in J_i} \langle f, v_{i,j} \rangle g_{i,j}.$$

Then $\Lambda_i f = Q_i T^* f$ for all $f \in \mathcal{H}$ and $i \in I$ and again Theorem 2.1 implies that $\{Q_i\}_{i \in I}$ is a g-orthonormal basis for \mathcal{H} . Conversely, if $\{Q_i\}_{i \in I}$ is a g-orthonormal basis for \mathcal{H} and $\Lambda_i = Q_i T^*$ for some bounded onto operator T, then we can find

orthonormal basis $\{u_{i,j}\}_{i \in I, j \in J_i}$ for \mathcal{H} such that $Q_i f = \sum_{j \in J_i} \langle f, u_{i,j} \rangle g_{i,j}$ for all $f \in \mathcal{H}$. Since

$$\Lambda_i f = Q_i T^* f = \sum_{j \in J_i} \langle T^* f, u_{i,j} \rangle g_{i,j} = \sum_{j \in J_i} \langle f, T u_{i,j} \rangle g_{i,j},$$

by Theorem 2.1, $\{\Lambda_i\}_{i \in I}$ is a *g*-frame for \mathcal{H} .

We mention that, if $\{e_n\}_{n=1}^{\infty}$ is an orthonormal basis for \mathcal{H} then the orthonormal bases for \mathcal{H} are precisely the sets $\{Ue_n\}_{n=1}^{\infty}$, where $U : \mathcal{H} \to \mathcal{H}$ is a unitary operator [3]. Using this fact and Theorem 2.1, we have the same situation for g-frames.

Proposition 2.3. Let $\{Q_i\}_{i \in I}$ be a g-orthonormal basis for \mathfrak{H} , with respect to $\{\mathfrak{H}_i\}_{i \in I}$. Then $\{\Lambda_i \in B(\mathfrak{H}, \mathfrak{H}_i)\}_{i \in I}$ is a g-orthonormal basis for \mathfrak{H} if and only if there is a unitary operator $T : \mathfrak{H} \to \mathfrak{H}$ such that $\Lambda_i = Q_i T$ for all $i \in I$.

Proof. Suppose that $\{\Lambda_i\}_{i \in I}$ is a *g*-orthonormal basis for \mathcal{H} . If $\{g_{i,j}\}_{i \in J_i}$ is an orthonormal basis for \mathcal{H}_i , then $\{\Lambda_i^*g_{i,j}\}_{i \in I, j \in J_i}$ and $\{Q_i^*g_{i,j}\}_{i \in I, j \in J_i}$ are orthonormal bases for \mathcal{H} . So $\Lambda_i^*g_{i,j} = T_1Q_i^*g_{i,j}$, where T_1 is a unitary operator. We have

$$\Lambda_i f = \sum_{j \in J_i} \langle f, \Lambda_i^* g_{i,j} \rangle g_{i,j} = \sum_{j \in J_i} \langle f, T_1 Q_i^* g_{i,j} \rangle g_{i,j}$$
$$= \sum_{j \in J_i} \langle T_1^* f, Q_i^* g_{i,j} \rangle g_{i,j} = Q_i T_1^* f$$

for all $f \in \mathcal{H}$ and $i \in I$. One can consider $T = T_1^*$. Then T is unitary and $\Lambda_i = Q_i T$ for all $i \in I$. For the inverse implication, assume that there is a unitary operator T and $\Lambda_i = Q_i T$, for $i \in I$. Then

$$\langle \Lambda_i^* g_i, \Lambda_j^* g_j \rangle = \langle T^* Q_i^* g_i, T^* Q_j^* g_j \rangle = \langle Q_i^* g_i, Q_j^* g_j \rangle = \delta_{ij} \langle g_i, g_j \rangle$$

for all $i, j \in I$, and $g_i \in \mathcal{H}_i, g_j \in \mathcal{H}_j$. Also we have

$$\sum_{i \in I} \|\Lambda_i f\|^2 = \sum_{i \in I} \|Q_i T f\|^2 = \|T f\|^2 = \|f\|^2, \quad f \in \mathcal{H}.$$

So $\{\Lambda_i\}_{i\in I}$ is a *g*-orthonormal basis for \mathcal{H} .

Proposition 2.4. A g-frame $\{\Lambda_i\}_{i \in I}$ for \mathcal{H} can be written as a real linear combination of two g-orthonormal bases for \mathcal{H} if and only if $\{\Lambda_i\}_{i \in I}$ is a g-Riesz basis for \mathcal{H} .

Proof. Let $\{\Lambda_i\}_{i\in I}$ be a g-Riesz basis for \mathcal{H} . Then there is a g-orthonormal basis $\{\Lambda_i\}_{i\in I}$ for \mathcal{H} and a bounded invertible operator T on \mathcal{H} such that $\Lambda_i = Q_i T$, for each $i \in I$ [10]. Since T is invertible, there are unitary operators U_1, U_2 such that $T = a_1 U_1 + a_2 U_2$ for some $a_1, a_2 \in \mathbb{R}$ [1]. So

$$\Lambda_i = a_1 Q_i U_1 + a_2 Q_i U_2, \qquad i \in I.$$

138

Proposition 2.3 implies that $\{Q_iU_1\}_{i\in I}$ and $\{Q_iU_2\}_{i\in I}$ are *g*-orthonormal bases. Conversely, let $\Lambda_i = a_1Q_i + a_2Q'_i$ for $i \in I$, where $\{Q_i\}_{i\in I}$ and $\{Q'_i\}_{i\in I}$ are *g*-orthonormal bases. Again by Proposition 2.3, there is a unitary operator $U : \mathcal{H} \to \mathcal{H}$ such that $Q'_i = Q_iU$ and $\Lambda_i = Q_i(a_1I + a_2U)$ for $i \in I$ and for some $a_1, a_2 \in \mathbb{R}$. Since the operator $a_1I + a_2U$ is invertible, $\{\Lambda_i\}_{i\in I}$ is a *g*-Riesz basis for \mathcal{H} . \Box

It is proved in [1], if $\{x_i\}_{i \in I}$ is a frame for \mathcal{H} with upper frame bound B, then for every $\varepsilon > 0$ there are orthonormal bases $\{f_i\}_{i \in I}$, $\{g_i\}_{i \in I}$ and $\{h_i\}_{i \in I}$ for \mathcal{H} and a constant $a = B(1 + \varepsilon)$ so that

$$x_i = a(f_i + g_i + h_i), \ i \in I.$$

We show g-frames have the similar property.

Theorem 2.5. Let $\{\Lambda_i \in B(\mathfrak{H}, \mathfrak{H}_i)\}_{i \in I}$ be a g-frame for \mathfrak{H} with bounds $0 < A \leq B$, with respect to $\{\mathfrak{H}_i\}_{i \in I}$. Then for every $\varepsilon > 0$, there are g-orthonormal bases $\{\Gamma_i \in B(\mathfrak{H}, \mathfrak{H}_i)\}_{i \in I}$, $\{\Phi_i \in B(\mathfrak{H}, \mathfrak{H}_i)\}_{i \in I}$ and $\{\Theta_i \in B(\mathfrak{H}, \mathfrak{H}_i)\}_{i \in I}$ for \mathfrak{H} and a constant $a = B(1 + \varepsilon)$ such that

$$\Lambda_i f = a(\Gamma_i f + \Phi_i f + \Theta_i f), \ i \in I, \ f \in \mathcal{H}.$$

Proof. Let $\{g_{i,j}\}_{i\in J_i}$ be an orthonormal basis for \mathcal{H}_i . Then $\{\Lambda_i^*g_{i,j}\}_{i\in I, j\in J_i}$ is a frame for \mathcal{H} and $\Lambda_i f = \sum_{j\in J_i} \langle f, \Lambda_i^*g_{i,j}\rangle g_{i,j}$, for every $f \in \mathcal{H}$. So for given $\varepsilon > 0$, there are orthonormal bases $\{f_{ij}\}_{i\in I, j\in J_i}$, $\{e_{ij}\}_{i\in I, j\in J_i}$ and $\{h_{ij}\}_{i\in I, j\in J_i}$ for \mathcal{H} such that

(2.1)
$$\Lambda_i f = \sum_{j \in J_i} \langle f, \Lambda_i^* g_{i,j} \rangle g_{i,j} = \sum_{j \in J_i} \langle f, a(f_{ij} + e_{ij} + h_{ij}) \rangle g_{i,j}$$

for each $f \in \mathcal{H}$ and $a = B(1+\varepsilon)$. For given $f \in \mathcal{H}$, we define $\Gamma_i f = \sum_{j \in J_i} \langle f, f_{ij} \rangle g_{i,j}$ and $\Phi_i f = \sum_{j \in J_i} \langle f, e_{ij} \rangle g_{i,j}$ and $\Theta_i f = \sum_{j \in J_i} \langle f, h_{ij} \rangle g_{i,j}$. Then (2.1) implies that

$$\Lambda_i f = a(\Gamma_i f + \Phi_i f + \Theta_i f), \ i \in I, \ f \in \mathcal{H}.$$

We show that $\{\Gamma_i\}_{i\in I}$, $\{\Phi_i\}_{i\in I}$ and $\{\Theta_i\}_{i\in I}$ are g-orthonormal bases for \mathcal{H} . If $g_i \in \mathcal{H}_i$, then $\Gamma_i^* g_i = \sum_{j\in J_i} \langle g_i, g_{i,j} \rangle f_{ij}$ and it is easy to show that

$$\langle \Gamma_i^* g_i, \Gamma_i^* g_j \rangle = \delta_{ij} \langle g_i, g_j \rangle, \ g_i \in \mathcal{H}_i, \ g_j \in \mathcal{H}_j, \ i, j \in I$$

and

$$\sum_{i \in I} \|\Gamma_i f\|^2 = \sum_{i \in I} \|\sum_{j \in J_i} \langle f, f_{ij} \rangle g_{i,j}\|^2 = \sum_{i \in I} \sum_{j \in J_i} |\langle f, f_{ij} \rangle|^2 = \|f\|^2.$$

This completes the proof.

As the following example shows, in general, a g-frame cannot be represented as a sum of two g-orthonormal bases.

Example 2.6. Let $\{\Theta_i \in B(\mathcal{H}, \mathcal{H}_i)\}_{i \in \mathbb{N}}$ be a *g*-orthonormal for \mathcal{H} , with respect to $\{\mathcal{H}_i\}_{i \in \mathbb{N}}$ and $\dim(\mathcal{H}_1) < \infty$. We consider the *g*-frame $\{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i)\}_{i \in \mathbb{N}}$ by $\Lambda_1 = 0$ and $\Lambda_{i+1} = \Theta_i$ for $i \in \mathbb{N}$. Assume that there are *g*-orthonormal bases $\{\Gamma_i \in B(\mathcal{H}, \mathcal{H}_i)\}_{i \in \mathbb{N}}, \{\Phi_i \in B(\mathcal{H}, \mathcal{H}_i)\}_{i \in \mathbb{N}}$ and scalars $c, d \neq 0$ such that $\Lambda_i = c\Gamma_i + d\Psi_i$ for all $i \in \mathbb{N}$. Then, $0 = \Lambda_1 = c\Gamma_1 + d\Psi_1$. Therefore

$$\operatorname{span}\{\Gamma_1^*(\mathcal{H}_1)\} = \operatorname{span}\{\Psi_1^*(\mathcal{H}_1)\}$$

since $\{\Gamma_i\}_{i\in I}$ and $\{\Phi_i\}_{i\in I}$ are g-complete, a result of [8] shows that

$$\overline{\operatorname{span}}\{\Gamma_i^*(\mathcal{H}_i)\}_{i\in\mathbb{N}} = \overline{\operatorname{span}}\{\Psi_i^*(\mathcal{H}_i)\}_{i\in\mathbb{N}} = \mathcal{H}.$$

The orthogonality condition of g-orthonormal bases $\{\Gamma_i\}_{i\in\mathbb{N}}$ and $\{\Phi_i\}_{i\in\mathbb{N}}$ implies

$$\overline{\operatorname{span}}\{\Gamma_i^*(\mathcal{H}_i)\}_{i\geq 2} = \overline{\operatorname{span}}\{\Psi_i^*(\mathcal{H}_i)\}_{i\geq 2} \neq \mathcal{H}.$$

But

$$\overline{\operatorname{span}}\{\Lambda_i^*(\mathcal{H}_i)\}_{i\geq 2} = \overline{\operatorname{span}}\{(\overline{c}\Gamma_i^* + d\Psi_i^*)(\mathcal{H}_i)\}_{i\geq 2} = \mathcal{H}$$

and this is contradiction.

We recall that, a bounded operator $T : \mathcal{H} \to \mathcal{H}$ is a maximal partial isometry if T or its adjoint is an isometry. Next proposition shows that every g-frame can be written as a multiple of a sum of two Parseval g-frame. Note that if $\{\Theta_i \in B(\mathcal{H}, \mathcal{H}_i)\}_{i \in I}$ is a g-orthonormal basis for \mathcal{H} and T is an isometry, then $\{\Theta_i T\}_{i \in I}$ is a Parseval g-frame.

Proposition 2.7. Let $\{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i)\}_{i \in I}$ be a g-frame for \mathcal{H} with respect to $\{\mathcal{H}_i\}_{i \in I}$. Then there are two Parseval g-frames $\{\Gamma_i \in B(\mathcal{H}, \mathcal{H}_i)\}_{i \in I}$ and $\{\Psi_i \in B(\mathcal{H}, \mathcal{H}_i)\}_{i \in I}$ for \mathcal{H} and a scalar a such that

$$\Lambda_i f = a(\Gamma_i f + \Psi_i f), \ i \in I, \ f \in \mathcal{H}.$$

Proof. By Proposition 2.2, $\Lambda_i = \Theta_i T^*$ for $i \in I$, where T is a bounded onto operator on \mathcal{H} and $\{\Theta_i \in B(\mathcal{H}, \mathcal{H}_i)\}_{i \in I}$ is a g-orthonormal basis for \mathcal{H} . Then

$$T = \frac{\|T\|U}{2}(W + W^*),$$

where W is a unitary and U ia a maximal partial isometry and $(UW)^*$ and $(UW^*)^*$ are isometries [1]. So

$$\Lambda_i = \frac{\|T\|}{2} \cdot \left[\Theta_i(UW)^* + \Theta_i(UW^*)^*\right],$$

for each $i \in I$. Here $\{\Theta_i(UW)^*\}_{i \in I}$ and $\{\Theta_i(UW^*)^*\}_{i \in I}$ are Parseval g-frames. \Box

References

- [1] P. G. Casazza, Every frames is a sum of three (but not two) orthonormal bases- and other frame representations, J. Fourier Anal. Appl., 4(1998), 727-732.
- [2] P. G. Casazza and G. Kutyniok, Frames of subspaces, Contemp. Math., 345(2004), 87-113.
- [3] O. Christensen, An Introduction to Frames and Riesz Bases, Birkhäuser, Boston, 2003.
- [4] O. Christensen and Y. C. Eldar, Oblique dual frames and shift invariant-spaces, Appl. Comput. Harmon. Anal., 17(2004), 48-68.
- [5] R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 72(1952), 341-366.
- [6] M. Fornasier, Decompositions of Hibert space: local construction of global frames, Proc. Int. Conf. On Constructive Function Theory, varna(2002), B. Bojanov Ed., DARBA, Sofia, 2003, 275-281.
- [7] S. Li and H. Ogawa, *Pseudoframes for subspaces with applications*, J. Fourier Anal. Appl., 10(2004), 409-431.
- [8] A. Najati, M. H. Faroughi and A. Rahimi, G-frames and stability of g-frames in Hilbert spaces, Methods Funct. Anal. Topology, 4(2008), 271-286.
- [9] S. Obeidat, S. Samarah, P. G. Casazza and J. C. Tremain, Sums of Hilbert Space frames, J. Math. Anal. Appl., 351(2009), 579-585.
- [10] W. Sun, G-frames and g-Riesz bases, J. Math. Anal. Appl., 322(2006), 437-452.