디지털융복합연구 (Journal of Digital Convergence)
- 제11권2호
- /
- Pages.235-242
- /
- 2013
- /
- 2713-6434(pISSN)
- /
- 2713-6442(eISSN)
DOI QR Code
협업적 이러닝 콘텐츠 평판시스템 연구
A Collaborative Reputation System for e-Learning Content
- 투고 : 2012.01.08
- 심사 : 2013.02.20
- 발행 : 2013.02.28
초록
본 연구에서는 정보원천 신뢰도 이론(source credibility theory)을 기반으로 비개인화된(non-personalized) 추천시스템의 일종인 평판시스템(reputation system)을 위한 평판 순위결정기법을 제안하고, 이러닝 콘텐츠 서비스에 적합한 평판시스템 모형을 제시하였다. 정보원천 신뢰도 요인 중 온라인 구전에 적합한 두 가지 요인(expertise, co-orientation)을 기반으로 사용자 평판정보를 암묵적으로 추출하는 기법을 제안하였다. 즉, 사용자의 과거 이러닝 콘텐츠 평가 정보로부터 사용자의 두 가지 신뢰도 요인을 자동적으로 추출하는 방법을 정의하고, 사용자중 높은 신뢰도를 가진 소수 평가자의 정보만을 가지고 전체 사용자의 콘텐츠 평판정보를 효과적으로 예측할 수 있는 방법을 제안하였다. 콘텐츠 평판정보를 예측하는 단계에 있어, 정보원천 신뢰도 이론이 반영된 수정된 협업 필터링(collaborative filtering) 기법을 적용하였다. 한편, 다양한 평판기법들과의 성능 비교실험을 통해, 제안하는 평판시스템 모형이 명시적인 사용자 평판정보가 부족한 기업대 소비자간(B2C) 이러닝 콘텐츠 전자상거래 사이트에 적합함을 검증하였다.
Reputation systems aggregate users' feedback after the completion of a transaction and compute the "reputation" of products, services, or providers, which can assist other users in decision-making in the future. With the rapid growth of online e-Learning content providing services, a suitable reputation system for more credible e-Learning content delivery has become important and is essential if educational content providers are to remain competitive. Most existing reputation systems focus on generating ratings only for user reputation; they fail to consider the reputations of products or services(item reputation). However, it is essential for B2C e-Learning services to have a reliable reputation rating mechanism for items since they offer guidance for decision-making by presenting the ranks or ratings of e-Learning content items. To overcome this problem, we propose a novel collaborative filtering based reputation rating method. Collaborative filtering, one of the most successful recommendation methods, can be used to improve a reputation system. In this method, dual information sources are formed with groups of co-oriented users and expert users and to adapt it to the reputation rating mechanism. We have evaluated its performance experimentally by comparing various reputation systems.
키워드