DOI QR코드

DOI QR Code

Enhanced Biofuel Production from High-Concentration Bioethanol Wastewater by a Newly Isolated Heterotrophic Microalga, Chlorella vulgaris LAM-Q

  • Xie, Tonghui (College of Chemical Engineering, Sichuan University) ;
  • Liu, Jing (College of Light Industry, Textile and Food Engineering, Sichuan University) ;
  • Du, Kaifeng (College of Chemical Engineering, Sichuan University) ;
  • Liang, Bin (College of Chemical Engineering, Sichuan University) ;
  • Zhang, Yongkui (College of Chemical Engineering, Sichuan University)
  • Received : 2013.01.17
  • Accepted : 2013.06.20
  • Published : 2013.10.28

Abstract

Microalgal biofuel production from wastewater has economic and environmental advantages. This article investigates the lipid production from high chemical oxygen demand (COD) bioethanol wastewater without dilution or additional nutrients, using a newly isolated heterotrophic microalga, Chlorella vulgaris LAM-Q. To enhance lipid accumulation, the combined effects of important operational parameters were studied via response surface methodology. The optimal conditions were found to be temperature of $22.8^{\circ}C$, initial pH of 6.7, and inoculum density of $1.2{\times}10^8cells/ml$. Under these conditions, the lipid productivity reached 195.96 mg/l/d, which was markedly higher than previously reported values in similar systems. According to the fatty acid composition, the obtained lipids were suitable feedstock for biodiesel production. Meanwhile, 61.40% of COD, 51.24% of total nitrogen, and 58.76% of total phosphorus were removed from the bioethanol wastewater during microalgal growth. In addition, 19.17% of the energy contained in the wastewater was transferred to the microalgal biomass in the fermentation process. These findings suggest that C. vulgaris LAM-Q can efficiently produce lipids from high-concentration bioethanol wastewater, and simultaneously performs wastewater treatment.

Keywords

References

  1. Akunna JC, Clark M. 2000. Performance of a granular-bed anaerobic baffled reactor (GRABBR) treating whisky distillery wastewater. Bioresour. Technol. 74: 257-261. https://doi.org/10.1016/S0960-8524(00)00017-1
  2. APHA, AWWA, and WPCF. 1971. Standard Methods for the Examination of Water and Wastewater. 13th Ed. American Public Health Association, Washington, DC.
  3. Bligh EG, Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Phys. 37: 911-917. https://doi.org/10.1139/o59-099
  4. Chang SY, Sun JM, Song SQ, Sun BS. 2012. Utilization of brewery wastewater for culturing yeast cells for use in river water remediation. Environ. Technol. 33: 589-595. https://doi.org/10.1080/09593330.2011.586058
  5. Chen L, Wang Z, Li MD, Li LL, Mao GP. 2012. Relationship of biodiesel component and cetane number. China Oils Fats 37: 53-56.
  6. Cheng HH, Whang LM, Wu CW, Chung MC. 2012. A twostage bioprocess for hydrogen and methane production from rice straw bioethanol residues. Bioresour. Technol. 113: 23-29. https://doi.org/10.1016/j.biortech.2011.12.103
  7. Cibis E, Ryznar-Luty A, Krzywonos M, Lutos awski K, Mi kiewicz T. 2011. Betaine removal during thermo- and mesophilic aerobic batch biodegradation of beet molasses vinasse: influence of temperature and pH on the progress and efficiency of the process. J. Environ. Manage. 92: 1733-1739. https://doi.org/10.1016/j.jenvman.2011.02.009
  8. Eroshin VK, Krylova NI. 1983. Efficiency of lipid synthesis by yeasts. Biotechnol. Bioeng. 25: 1693-1700. https://doi.org/10.1002/bit.260250702
  9. Espana-Gamboa E, Mijangos-Cortes J, Barahona-Perez L, Dominguez-Maldonado J, Hernandez-Zarate G, Alzate-Gaviria L. 2011. Vinasses: characterization and treatments. Waste Manage. Res. 29: 1235-1250. https://doi.org/10.1177/0734242X10387313
  10. Gao W, Lee EJ, Lee SU, Li JH, Chung CH, Lee JW. 2012. Enhanced carboxymethylcellulase production by a newly isolated marine bacterium, Cellulophaga lytica LBH-14, using rice bran. J. Microbiol. Biotechnol. 22: 1412-1422. https://doi.org/10.4014/jmb.1203.03009
  11. Hsieh CH, Wu WT. 2009. Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresour. Technol. 100: 3921-3926. https://doi.org/10.1016/j.biortech.2009.03.019
  12. Jiang LL, Luo SJ, Fan XL, Yang ZM, Guo RB. 2011. Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of $CO_2$. Appl. Energy 88: 3336-3341. https://doi.org/10.1016/j.apenergy.2011.03.043
  13. Kongjan P, O-Thong S, Kotay M, Min B, Angelidaki I. 2010. Biohydrogen production from wheat straw hydrolysate by dark fermentation using extreme thermophilic mixed culture. Biotechnol. Bioeng. 105: 899-908.
  14. Kothari R, Pathak VV, Kumar V, Singh D. 2012. Experimental study for growth potential of unicellular alga Chlorella pyrenoidosa on dairy waste water: an integrated approach for treatment and biofuel production. Bioresour. Technol. 116: 466-470. https://doi.org/10.1016/j.biortech.2012.03.121
  15. Lalucat J, Imperial J, Pares R. 1984. Utilization of light for the assimilation of organic matter in Chlorella sp. VJ79. Biotechnol. Bioeng. 26: 677-681. https://doi.org/10.1002/bit.260260707
  16. Liu H, Sun LN, Chen XJ, Shen XT, Jing JG, Zhou YC. 2011. Treatment of alcohol wastewater and resource utilization. Environ. Sci. Technol. 34: 180-183.
  17. Liu JX, Yue QY, Gao BY, Ma ZH, Zhang PD. 2012. Microbial treatment of the monosodium glutamate wastewater by Lipomyces starkeyi to produce microbial lipid. Bioresour. Technol. 106: 69-73. https://doi.org/10.1016/j.biortech.2011.12.022
  18. Lopez-Elias JA, Esquer-Miranda E, Martinez-Porchas M, Garza-Aguirre MC, Rivas-Vega M, Huerta-Aldaz N. 2011. The effect of inoculation time and inoculum concentration on the productive response of Tetraselmis chuii (BUTCHER, 1958) mass cultured in F/2 and 2-F media. Arch. Biol. Sci. 63: 557-562. https://doi.org/10.2298/ABS1103557L
  19. Lu SH, Wang JX, Niu YH, Yang J, Zhou J, Yuan YJ. 2012. Metabolic profiling reveals growth related FAME productivity and quality of Chlorella sorokiniana with different inoculum sizes. Biotechnol. Bioeng. 109: 1651-1662. https://doi.org/10.1002/bit.24447
  20. Lutoslawski K, Ryznar-Luty A, Cibis E, Krzywonos M, Miskiewicz T. 2011. Biodegradation of beet molasses vinasse by a mixed culture of microorganisms: effect of aeration conditions and pH control. J. Environ. Sci. 23: 1823-1830. https://doi.org/10.1016/S1001-0742(10)60579-7
  21. Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  22. Mohana S, Acharya BK, Madamwar D. 2009. Distillery spent wash: treatment technologies and potential applications. J. Hazard. Mater. 163: 12-25. https://doi.org/10.1016/j.jhazmat.2008.06.079
  23. Nelson M, Zhu L, Thiel A, Wu Y, Guan M, Minty J, et al. 2013. Microbial utilization of aqueous co-products from hydrothermal liquefaction of microalgae Nannochloropsis oculata. Bioresour. Technol. 136: 552-528.
  24. Nydahl F. 1978. On the peroxodisulphate oxidation of total nitrogen in waters to nitrate. Water Res. 12: 1123-1130. https://doi.org/10.1016/0043-1354(78)90060-X
  25. Ogbonna J, Ichige E, Tanaka H. 2002. Interactions between photoautotrophic and heterotrophic metabolism in photoheterotrophic cultures of Euglena gracilis. Appl. Microbiol. Biotechnol. 58: 532-538. https://doi.org/10.1007/s00253-001-0901-8
  26. Oswald WJ. 1988. Micro-Algae and Waste-Water Treatment, pp. 305-328. Cambridge University Press, Cambridge, London.
  27. Pahl SL, Lewis DM, Chen F, King KD. 2010. Heterotrophic growth and nutritional aspects of the diatom Cyclotella cryptica (Bacillariophyceae): effect of some environmental factors. J. Biosci. Bioeng. 109: 235-239. https://doi.org/10.1016/j.jbiosc.2009.08.480
  28. Passarge J, Hol S, Escher M, Huisman J. 2006. Competition for nutrients and light: stable coexistence, alternative stable states, or competitive exclusion? Ecol. Monogr. 76: 57-72. https://doi.org/10.1890/04-1824
  29. Perez-Garcia O, de-Bashan LE, Hernandez JP, Bashan Y. 2010. Efficiency of growth and nutrient uptake from wastewater by heterotrophic, autotrophic, and mixotrophic cultivation of Chlorella vulgaris immobilized with Azospirillum brasilense. J. Phycol. 46: 800-812. https://doi.org/10.1111/j.1529-8817.2010.00862.x
  30. Perez-Garcia O, Escalante FME, de-Bashan LE, Bashan Y. 2011. Heterotrophic cultures of microalgae: metabolism and potential products. Water Res. 45: 11-36. https://doi.org/10.1016/j.watres.2010.08.037
  31. Petursson S. 2002. Clarification and expansion of formulas in AOCS recommended practice Cd 1c-85 for the calculation of iodine value from FA composition. J. Am. Oil Chem. Soc. 79: 737-738. https://doi.org/10.1007/s11746-002-0551-1
  32. Pramanik A, Mitra A, Arumugam M, Bhattacharyya A, Sadhukhan S, Ray A, et al. 2012. Utilization of vinasse for the production of polyhydroxybutyrate by Haloarcula marismortui. Folia Microbiol. 57: 71-79. https://doi.org/10.1007/s12223-011-0092-3
  33. Qiu CS, Wen JP, Jia XQ. 2011. Extreme-thermophilic biohydrogen production from lignocellulosic bioethanol distillery wastewater with community analysis of hydrogenproducing microflora. Int. J. Hydrogen Energy 36: 8243-8251. https://doi.org/10.1016/j.ijhydene.2011.04.089
  34. Queiroz MI, Hornes MO, da Silva-Manetti AG, Jacob-Lopes E. 2011. Single-cell oil production by cyanobacterium Aphanothece microscopica Nageli cultivated heterotrophically in fish processing wastewater. Appl. Energy 88: 3438-3443. https://doi.org/10.1016/j.apenergy.2010.12.047
  35. Riano B, Molinuevo B, Garcia-Gonzalez MC. 2011. Treatment of fish processing wastewater with microalgae-containing microbiota. Bioresour. Technol. 102: 10829-10833. https://doi.org/10.1016/j.biortech.2011.09.022
  36. Siles JA, Garcia-Garcia I, Martin A, Martin MA. 2011. Integrated ozonation and biomethanization treatments of vinasse derived from ethanol manufacturing. J. Hazard. Mater. 188: 247-253. https://doi.org/10.1016/j.jhazmat.2011.01.096
  37. Su HY, Zhang YL, Zhang CM, Zhou XF, Li JP. 2011. Cultivation of Chlorella pyrenoidosa in soybean processing wastewater. Bioresour. Technol. 102: 9884-9890. https://doi.org/10.1016/j.biortech.2011.08.016
  38. Valderrama LT, Del Campo CM, Rodriguez CM, de-Bashan LE, Bashan Y. 2002. Treatment of recalcitrant wastewater from ethanol and citric acid production using the microalga Chlorella vulgaris and the macrophyte Lemna minuscula. Water Res. 36: 4185-4192. https://doi.org/10.1016/S0043-1354(02)00143-4
  39. Wagenen JV, Miller TW, Hobbs S, Hook P, Crowe B, Huesemann M. 2012. Effects of light and temperature on fatty acid production in Nannochloropsis salina. Energies 5: 730-740.
  40. Wang B, Lan CQ. 2011. Biomass production and nitrogen and phosphorus removal by the green alga Neochloris oleoabundans in simulated wastewater and secondary municipal wastewater effluent. Bioresour. Technol. 102: 5639-5644. https://doi.org/10.1016/j.biortech.2011.02.054
  41. Wang L, Min M, Li YC, Chen P, Chen YF, Liu YH, et al. 2010. Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl. Biochem. Biotechnol. 162: 1174-1186. https://doi.org/10.1007/s12010-009-8866-7
  42. Wang L, Zhang CB, Wu F, Deng NS. 2007. Photodegradation of aniline in aqueous suspensions of microalgae. J. Photochem. Photobiol. B 87: 49-57. https://doi.org/10.1016/j.jphotobiol.2006.12.006
  43. Xu H, Miao X, Wu Q. 2006. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J. Biotechnol. 126: 499-507. https://doi.org/10.1016/j.jbiotec.2006.05.002
  44. Xue FY, Miao JX, Zhang X, Tan TW. 2010. A new strategy for lipid production by mix cultivation of Spirulina platensis and Rhodotorula glutinis. Appl. Biochem. Biotechnol. 160: 498-503. https://doi.org/10.1007/s12010-008-8376-z
  45. Yang J, Xu M, Zhang XZ, Hu Q, Sommerfeld M, Chen YS. 2011. Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresour. Technol. 102: 159-165. https://doi.org/10.1016/j.biortech.2010.07.017
  46. Zhou WG, Li Y C, M in M , Hu B , Chen P , Ruan R . 2011. Local bioprospecting for high-lipid producing microalgal strains to be grown on concentrated municipal wastewater for biofuel production. Bioresour. Technol. 102: 6909-6919. https://doi.org/10.1016/j.biortech.2011.04.038
  47. Zhou WW, Li Y H, Z hang Y K, Z hao ZB . 2012. E nergy efficiency evaluation of lipid production by oleaginous yeast Rhodosporidium toruloides. J. Therm. Anal. Calorim. 108: 119-126. https://doi.org/10.1007/s10973-011-1659-6
  48. Zhou WW, Wang WR, Li YH, Zhang YK. 2012. Lipid production by Rhodosporidium toruloides Y2 in bioethanol wastewater and evaluation of biomass energetic yield. Bioresour. Technol. 127: 435-440.

Cited by

  1. Screening and Characterization of Oleaginous Microalgal Species from Northern Xinjiang vol.25, pp.6, 2013, https://doi.org/10.4014/jmb.1411.11075
  2. Mixed fermentation of Aspergillus niger and Candida shehatae to produce bioethanol with ionic-liquid-pretreated bagasse vol.9, pp.2, 2013, https://doi.org/10.1007/s13205-019-1570-6