References
- Agbogbo FK, Coward-Kelly G, Torry-Smith M, Wenger KS. 2006. Fermentation of glucose/xylose mixtures using Pichia stipitis. Process Biochem. 41: 2333-2336. https://doi.org/10.1016/j.procbio.2006.05.004
- Bardi EP, Koutinas AA. 1994. Immobilization of yeast on delignified cellulosic material for room temperature and low-temperature wine making. J. Agric. Food Chem. 42: 221-226. https://doi.org/10.1021/jf00037a040
- Cardona CA, Sanchez O. 2007. Fuel ethanol production: process design trends and integration opportunities. Bioresour. Technol. 98: 2415-2457. https://doi.org/10.1016/j.biortech.2007.01.002
- Chaplin MF, Kennedy JF. 1986. Carbohydrate analysis; A Practical Approach, pp. 3. IRL Press, Oxford, UK.
- Chen Y. 2011. Development and application of co-culture for ethanol production by co-fermentation of glucose and xylose: a systematic review. J. Ind. Microbiol. Biotechnol. 38: 581-597. https://doi.org/10.1007/s10295-010-0894-3
- Choi WY, Han JG, Lee CG, Song CH, Kim JS, Seo YC, et al. 2012. Bioethanol production from Ulva pertusa Kjellman by high-temperature liquefaction. Chem. Biochem. Eng. Q. 26: 15-21.
- Converti A, Perego P, Dominguez JM. 1999. Microaerophilic metabolism of Pachysolen tannophilus at different pH values. Biotechnol. Lett. 21: 719-723. https://doi.org/10.1023/A:1005546814194
- Dien BS, Cotta MA, Jeffries TW. 2003. Bacteria engineered for fuel ethanol production: current status. Appl. Microbiol. Biotechnol. 63: 258-266. https://doi.org/10.1007/s00253-003-1444-y
- Gnansounou E, Dauriat A. 2010. Techno-economic analysis of lignocellulosic ethanol: a review. Bioresour. Technol. 101: 4980-4991. https://doi.org/10.1016/j.biortech.2010.02.009
- Govindaswamy S, Vane LM. 2010. Multi-stage continuous culture fermentation of glucose-xylose mixtures to fuel ethanol using genetically engineered Saccharomyces cerevisiae 424A. Bioresour. Technol. 101: 1277-1284. https://doi.org/10.1016/j.biortech.2009.09.042
- Grootjen DRJ, Jansen ML, van der Lans RGJM, Luyben KChAM. 1991. Reactors in series for the complete conversion of glucose/xylose mixtures by Pichia stipitis and Saccharomyces cerevisiae. Enzyme Microb. Technol. 13: 828-833. https://doi.org/10.1016/0141-0229(91)90067-K
- Grootjen DRJ, Meijlink LHHM, van der Lans RGJM, Luyben KChAM. 1990. Cofermentation of glucose and xylose with immobilized Pichia stipitis and Saccharomyces cerevisiae. Enzyme Microb. Technol. 12: 860-864. https://doi.org/10.1016/0141-0229(90)90023-J
- Grootjen DRJ, van der Lans RGJM, Luyben KChAM. 1991. Conversion of glucose/xylose mixtures by Pichia stipitis under oxygen-limited conditions. Enzyme Microb. Technol. 13: 648-654. https://doi.org/10.1016/0141-0229(91)90079-P
- Grootjen DRJ, van der Lans RGJM, Luyben KChAM. 1990. Effects of the aeration rate on the fermentation of glucose and xylose by Pichia stipitis CBS 5773. Enzyme Microb. Technol. 12: 20-23. https://doi.org/10.1016/0141-0229(90)90174-O
- Jeffries TW. 2006. Engineering yeasts for xylose metabolism. Curr. Opin. Biotechnol. 17: 320-326. https://doi.org/10.1016/j.copbio.2006.05.008
- John RP, Anisha GS, Nampoothiri KM, Pandey A. 2011. Micro and macroalgal biomass: A renewable source for bioethanol. Bioresour. Technol. 102: 186-193. https://doi.org/10.1016/j.biortech.2010.06.139
- Krishnan MS, Ho NWY, Tsao GT. 1999. Fermentation kinetics of ethanol production from glucose and xylose by recombinant Saccharomyces 1400(pLNH33). Appl. Biochem. Biotechnol. 78: 373-388. https://doi.org/10.1385/ABAB:78:1-3:373
- Laplace JM, Delgenes JP, Moletta R, Navarro JM. 1993. Ethanol production from glucose and xylose by separated and co-culture processes using high cell density systems. Process Biochem. 28: 519-525. https://doi.org/10.1016/0032-9592(93)85013-6
- Lebeau T, Jouenne T, Junter GA. 1998. Continuous alcoholic fermentation of glucose/xylose mixtures by co-immobilized Saccharomyces cerevisiae and Candida shehatae. Appl. Microbiol. Biotechnol. 50: 309-313. https://doi.org/10.1007/s002530051296
- Lebeau T, Jouenne T, Junter GA. 2007. Long-term incomplete xylose fermentation, after glucose exhaustion, with Candida shehatae co-immobilized with Sacchromyces cerevisiae. Microbiol. Res. 162: 211-218. https://doi.org/10.1016/j.micres.2006.07.005
- Lebeau T, Jouenne T, Junter GA. 1997. Simultaneous fermentation of glucose and xylose by pure and mixed cultures of Saccharomyces cerevisiae and Candida shehatae immobilized in a two-chambered bioreactor. Enzyme Microb. Technol. 21: 265-271. https://doi.org/10.1016/S0141-0229(97)00005-7
- Lee S-E, Lee CG, Kang D-H, Lee H-Y, Jung K-H. 2012. Preparation of corncob grits as a carrier for immobilizing yeast cells for ethanol production. J. Microbiol. Biotechnol. 22: 1673-1680. https://doi.org/10.4014/jmb.1202.02049
- Lee S-E, Lee JE, Kim EJ, Choi JH, Choi WY, Kang D-H, et al. 2012. Immobilization of yeast Pichia stipitis for ethanol production. J. Life Sci. 22: 508-515. https://doi.org/10.5352/JLS.2012.22.4.508
- Lee S-E, Lee JE, Shin GY, Choi WY, Kang D-H, Lee H-Y, et al. 2012. Development of practical and cost-effective medium for the bioethanol production from the seaweed hydrolysate in surface-aerated fermentor by repeated-batch operation. J. Microbiol. Biotechnol. 22: 107-113. https://doi.org/10.4014/jmb.1106.06019
- Lee JE, Lee S-E, Cho WY, Kang D-H, Lee H-Y, Jung K-H. 2011. Bioethanol production using a yeast Pichia stipitis from the hydrolysate of Ulva pertusa Kjellman. Kor. J. Mycol. 39: 243-248. https://doi.org/10.4489/KJM.2010.39.3.243
- Lee S-E, Kim HJ, Choi WY, Kang D-H, Lee H-Y, Jung K-H. 2011. Optimal surface aeration rate for bioethanol production from the hydrolysate of seaweed Sargassum sagamianum using Pichia stipitis. KSBB J. 26: 311-316. https://doi.org/10.7841/ksbbj.2011.26.4.311
- Ligthelm ME, Prior BA, du Preez JC. 1988. The oxygen requirements of yeasts for the fermentation of D-xylose and D-glucose to ethanol. Appl. Microbiol. Biotechnol. 28: 63-68. https://doi.org/10.1007/BF00250500
- Sanchez S, Bravo V, Castro E, Moya AJ, Camacho F. 2002. The fermentation of mixtures of D-glucose and D-xylose by Candida shehatae, Pichia stipitis or Pachysolen tannophilus to produce ethanol. J. Chem. Technol. Biotechnol. 77: 641-648. https://doi.org/10.1002/jctb.622
- Sarkar N, Ghosh SK, Bannerjee S, Aikat K. 2012. Bioethanol production from agricultural wastes: an overview. Renew. Energy 37: 19-27. https://doi.org/10.1016/j.renene.2011.06.045
- Sedlak M, Ho NWY. 2004. Production of ethanol from cellulosic biomass hydrolysates using genetically engineered Saccharomyces yeast capable of cofermenting glucose and xylose. Appl. Biochem. Biotechnol. 113-116: 403-416.
- Shuler ML, Kargi F. 2002. Bioprocess Engineering: Basic Concepts, pp. 273-275. 2nd Ed. Prentice-Hall Inc., New Jersey, USA.
- Skoog K, Hahn-Hagerdal B. 1990. Effect of oxygenation on xylose fermentation by Pichia stipitis. Appl. Environ. Microbiol. 56: 3389-3394.
- Taniguchi M, Itaya T, Tohma T, Fujii M. 1997. Ethanol production from a mixture of glucose and xylose by a novel co-culture system with two fermentors and two microfiltration modules. J. Ferment. Bioeng. 83: 59-64. https://doi.org/10.1016/S0922-338X(97)87328-X
- Taniguchi M, Itaya T, Tohma T, Fujii M. 1997. Ethanol production of a mixture of glucose and xylose by co-culture of Pichia stipitis and a respiratory-deficient mutant of Saccharomyces cerevisiae. J. Ferment. Bioeng. 83: 364-370. https://doi.org/10.1016/S0922-338X(97)80143-2
- Unrean P, Srienc F. 2010. Continuous production of ethanol from hexoses and pentoses using immobilized mixed cultures of Escherichia coli strains. J. Biotechnol. 150: 215-223.
- Wei N, Quarterman J, Jin YS. 2013. Marine macroalgae: an untapped resource for producing fuels and chemicals. Trends Biotechnol. 31: 70-77. https://doi.org/10.1016/j.tibtech.2012.10.009
- Yeon J-H, Lee S-E, Choi WY, Choi W-S, Kim I-C, Lee H-Y, et al. 2011. Bioethanol production from the hydrolysate of rape stem in a surface-aerated fermentor. J. Microbiol. Biotechnol. 21: 109-114. https://doi.org/10.4014/jmb.1008.08001
- Yeon J-H, Lee S-E, Choi WY, Kang D-H, Lee H-Y, Jung K-H. 2011. Repeated-batch operation of surface-aerated fermentor for bioethanol production from the hydrolysate of seaweed Sargassum sagamianum. J. Microbiol. Biotechnol. 21: 323-331.
- Zhao L, Zhang X, Tan T. 2008. Influence of various glucose/xylose mixtures on ethanol production by Pachysolen tannophilus. Biomass Bioenergy 32: 1156-1161. https://doi.org/10.1016/j.biombioe.2008.02.011
Cited by
- Ethanol Production from Glycerol Using Immobilized Pachysolen tannophilus During Microaerated Repeated-Batch Fermentor Culture vol.25, pp.3, 2013, https://doi.org/10.4014/jmb.1409.09030
- Net primary productivity, biofuel production and CO2 emissions reduction potential of Ulva sp. (Chlorophyta) biomass in a coastal area of the Eastern Mediterranean vol.148, pp.None, 2013, https://doi.org/10.1016/j.enconman.2017.06.066