DOI QR코드

DOI QR Code

Two-Step Process Using Immobilized Saccharomyces cerevisiae and Pichia stipitis for Ethanol Production from Ulva pertusa Kjellman Hydrolysate

  • Lee, Sang-Eun (Department of Biotechnology, Korea National University of Transportation) ;
  • Kim, Yi-Ok (Department of Biotechnology, Korea National University of Transportation) ;
  • Choi, Woo Yong (Department of Medical Biomaterials Engineering, Kangwon National University) ;
  • Kang, Do-Hyung (Korea Institute of Ocean Science and Technology) ;
  • Lee, Hyeon-Yong (Department of Food Science and Engineering, Seowon University) ;
  • Jung, Kyung-Hwan (Department of Biotechnology, Korea National University of Transportation)
  • Received : 2013.04.05
  • Accepted : 2013.07.12
  • Published : 2013.10.28

Abstract

We established a two-step production process using immobilized S. cerevisiae and P. stipitis yeast to produce ethanol from seaweed (U. pertusa Kjellman) hydrolysate. The process was designed to completely consume both glucose and xylose. In particular, the yeasts were immobilized using DEAE-corncob and DEAE-cotton, respectively. The first step of the process included a continuous column reactor using immobilized S. cerevisiae, and the second step included a repeated-batch reactor using immobilized P. stipitis. It was verified that the glucose and xylose in 20 L of medium containing the U. pertusa Kjellman hydrolysate was converted completely to about 5.0 g/l ethanol through the two-step process, in which the overall ethanol yield from total reducing sugar was 0.37 and the volumetric ethanol productivity was 0.126 g/l/h. The volumetric ethanol productivity of the two-step process was about 2.7 times greater than that when P. stipitis was used alone for ethanol production from U. pertusa Kjellman hydrolysate. In addition, the overall ethanol yield from glucose and xylose was superior to that when P. stipitis was used alone for ethanol production. This two-step process will not only contribute to the development of an integrated process for ethanol production from glucose-and xylose-containing biomass hydrolysates, but could also be used as an alternative method for ethanol production.

Keywords

References

  1. Agbogbo FK, Coward-Kelly G, Torry-Smith M, Wenger KS. 2006. Fermentation of glucose/xylose mixtures using Pichia stipitis. Process Biochem. 41: 2333-2336. https://doi.org/10.1016/j.procbio.2006.05.004
  2. Bardi EP, Koutinas AA. 1994. Immobilization of yeast on delignified cellulosic material for room temperature and low-temperature wine making. J. Agric. Food Chem. 42: 221-226. https://doi.org/10.1021/jf00037a040
  3. Cardona CA, Sanchez O. 2007. Fuel ethanol production: process design trends and integration opportunities. Bioresour. Technol. 98: 2415-2457. https://doi.org/10.1016/j.biortech.2007.01.002
  4. Chaplin MF, Kennedy JF. 1986. Carbohydrate analysis; A Practical Approach, pp. 3. IRL Press, Oxford, UK.
  5. Chen Y. 2011. Development and application of co-culture for ethanol production by co-fermentation of glucose and xylose: a systematic review. J. Ind. Microbiol. Biotechnol. 38: 581-597. https://doi.org/10.1007/s10295-010-0894-3
  6. Choi WY, Han JG, Lee CG, Song CH, Kim JS, Seo YC, et al. 2012. Bioethanol production from Ulva pertusa Kjellman by high-temperature liquefaction. Chem. Biochem. Eng. Q. 26: 15-21.
  7. Converti A, Perego P, Dominguez JM. 1999. Microaerophilic metabolism of Pachysolen tannophilus at different pH values. Biotechnol. Lett. 21: 719-723. https://doi.org/10.1023/A:1005546814194
  8. Dien BS, Cotta MA, Jeffries TW. 2003. Bacteria engineered for fuel ethanol production: current status. Appl. Microbiol. Biotechnol. 63: 258-266. https://doi.org/10.1007/s00253-003-1444-y
  9. Gnansounou E, Dauriat A. 2010. Techno-economic analysis of lignocellulosic ethanol: a review. Bioresour. Technol. 101: 4980-4991. https://doi.org/10.1016/j.biortech.2010.02.009
  10. Govindaswamy S, Vane LM. 2010. Multi-stage continuous culture fermentation of glucose-xylose mixtures to fuel ethanol using genetically engineered Saccharomyces cerevisiae 424A. Bioresour. Technol. 101: 1277-1284. https://doi.org/10.1016/j.biortech.2009.09.042
  11. Grootjen DRJ, Jansen ML, van der Lans RGJM, Luyben KChAM. 1991. Reactors in series for the complete conversion of glucose/xylose mixtures by Pichia stipitis and Saccharomyces cerevisiae. Enzyme Microb. Technol. 13: 828-833. https://doi.org/10.1016/0141-0229(91)90067-K
  12. Grootjen DRJ, Meijlink LHHM, van der Lans RGJM, Luyben KChAM. 1990. Cofermentation of glucose and xylose with immobilized Pichia stipitis and Saccharomyces cerevisiae. Enzyme Microb. Technol. 12: 860-864. https://doi.org/10.1016/0141-0229(90)90023-J
  13. Grootjen DRJ, van der Lans RGJM, Luyben KChAM. 1991. Conversion of glucose/xylose mixtures by Pichia stipitis under oxygen-limited conditions. Enzyme Microb. Technol. 13: 648-654. https://doi.org/10.1016/0141-0229(91)90079-P
  14. Grootjen DRJ, van der Lans RGJM, Luyben KChAM. 1990. Effects of the aeration rate on the fermentation of glucose and xylose by Pichia stipitis CBS 5773. Enzyme Microb. Technol. 12: 20-23. https://doi.org/10.1016/0141-0229(90)90174-O
  15. Jeffries TW. 2006. Engineering yeasts for xylose metabolism. Curr. Opin. Biotechnol. 17: 320-326. https://doi.org/10.1016/j.copbio.2006.05.008
  16. John RP, Anisha GS, Nampoothiri KM, Pandey A. 2011. Micro and macroalgal biomass: A renewable source for bioethanol. Bioresour. Technol. 102: 186-193. https://doi.org/10.1016/j.biortech.2010.06.139
  17. Krishnan MS, Ho NWY, Tsao GT. 1999. Fermentation kinetics of ethanol production from glucose and xylose by recombinant Saccharomyces 1400(pLNH33). Appl. Biochem. Biotechnol. 78: 373-388. https://doi.org/10.1385/ABAB:78:1-3:373
  18. Laplace JM, Delgenes JP, Moletta R, Navarro JM. 1993. Ethanol production from glucose and xylose by separated and co-culture processes using high cell density systems. Process Biochem. 28: 519-525. https://doi.org/10.1016/0032-9592(93)85013-6
  19. Lebeau T, Jouenne T, Junter GA. 1998. Continuous alcoholic fermentation of glucose/xylose mixtures by co-immobilized Saccharomyces cerevisiae and Candida shehatae. Appl. Microbiol. Biotechnol. 50: 309-313. https://doi.org/10.1007/s002530051296
  20. Lebeau T, Jouenne T, Junter GA. 2007. Long-term incomplete xylose fermentation, after glucose exhaustion, with Candida shehatae co-immobilized with Sacchromyces cerevisiae. Microbiol. Res. 162: 211-218. https://doi.org/10.1016/j.micres.2006.07.005
  21. Lebeau T, Jouenne T, Junter GA. 1997. Simultaneous fermentation of glucose and xylose by pure and mixed cultures of Saccharomyces cerevisiae and Candida shehatae immobilized in a two-chambered bioreactor. Enzyme Microb. Technol. 21: 265-271. https://doi.org/10.1016/S0141-0229(97)00005-7
  22. Lee S-E, Lee CG, Kang D-H, Lee H-Y, Jung K-H. 2012. Preparation of corncob grits as a carrier for immobilizing yeast cells for ethanol production. J. Microbiol. Biotechnol. 22: 1673-1680. https://doi.org/10.4014/jmb.1202.02049
  23. Lee S-E, Lee JE, Kim EJ, Choi JH, Choi WY, Kang D-H, et al. 2012. Immobilization of yeast Pichia stipitis for ethanol production. J. Life Sci. 22: 508-515. https://doi.org/10.5352/JLS.2012.22.4.508
  24. Lee S-E, Lee JE, Shin GY, Choi WY, Kang D-H, Lee H-Y, et al. 2012. Development of practical and cost-effective medium for the bioethanol production from the seaweed hydrolysate in surface-aerated fermentor by repeated-batch operation. J. Microbiol. Biotechnol. 22: 107-113. https://doi.org/10.4014/jmb.1106.06019
  25. Lee JE, Lee S-E, Cho WY, Kang D-H, Lee H-Y, Jung K-H. 2011. Bioethanol production using a yeast Pichia stipitis from the hydrolysate of Ulva pertusa Kjellman. Kor. J. Mycol. 39: 243-248. https://doi.org/10.4489/KJM.2010.39.3.243
  26. Lee S-E, Kim HJ, Choi WY, Kang D-H, Lee H-Y, Jung K-H. 2011. Optimal surface aeration rate for bioethanol production from the hydrolysate of seaweed Sargassum sagamianum using Pichia stipitis. KSBB J. 26: 311-316. https://doi.org/10.7841/ksbbj.2011.26.4.311
  27. Ligthelm ME, Prior BA, du Preez JC. 1988. The oxygen requirements of yeasts for the fermentation of D-xylose and D-glucose to ethanol. Appl. Microbiol. Biotechnol. 28: 63-68. https://doi.org/10.1007/BF00250500
  28. Sanchez S, Bravo V, Castro E, Moya AJ, Camacho F. 2002. The fermentation of mixtures of D-glucose and D-xylose by Candida shehatae, Pichia stipitis or Pachysolen tannophilus to produce ethanol. J. Chem. Technol. Biotechnol. 77: 641-648. https://doi.org/10.1002/jctb.622
  29. Sarkar N, Ghosh SK, Bannerjee S, Aikat K. 2012. Bioethanol production from agricultural wastes: an overview. Renew. Energy 37: 19-27. https://doi.org/10.1016/j.renene.2011.06.045
  30. Sedlak M, Ho NWY. 2004. Production of ethanol from cellulosic biomass hydrolysates using genetically engineered Saccharomyces yeast capable of cofermenting glucose and xylose. Appl. Biochem. Biotechnol. 113-116: 403-416.
  31. Shuler ML, Kargi F. 2002. Bioprocess Engineering: Basic Concepts, pp. 273-275. 2nd Ed. Prentice-Hall Inc., New Jersey, USA.
  32. Skoog K, Hahn-Hagerdal B. 1990. Effect of oxygenation on xylose fermentation by Pichia stipitis. Appl. Environ. Microbiol. 56: 3389-3394.
  33. Taniguchi M, Itaya T, Tohma T, Fujii M. 1997. Ethanol production from a mixture of glucose and xylose by a novel co-culture system with two fermentors and two microfiltration modules. J. Ferment. Bioeng. 83: 59-64. https://doi.org/10.1016/S0922-338X(97)87328-X
  34. Taniguchi M, Itaya T, Tohma T, Fujii M. 1997. Ethanol production of a mixture of glucose and xylose by co-culture of Pichia stipitis and a respiratory-deficient mutant of Saccharomyces cerevisiae. J. Ferment. Bioeng. 83: 364-370. https://doi.org/10.1016/S0922-338X(97)80143-2
  35. Unrean P, Srienc F. 2010. Continuous production of ethanol from hexoses and pentoses using immobilized mixed cultures of Escherichia coli strains. J. Biotechnol. 150: 215-223.
  36. Wei N, Quarterman J, Jin YS. 2013. Marine macroalgae: an untapped resource for producing fuels and chemicals. Trends Biotechnol. 31: 70-77. https://doi.org/10.1016/j.tibtech.2012.10.009
  37. Yeon J-H, Lee S-E, Choi WY, Choi W-S, Kim I-C, Lee H-Y, et al. 2011. Bioethanol production from the hydrolysate of rape stem in a surface-aerated fermentor. J. Microbiol. Biotechnol. 21: 109-114. https://doi.org/10.4014/jmb.1008.08001
  38. Yeon J-H, Lee S-E, Choi WY, Kang D-H, Lee H-Y, Jung K-H. 2011. Repeated-batch operation of surface-aerated fermentor for bioethanol production from the hydrolysate of seaweed Sargassum sagamianum. J. Microbiol. Biotechnol. 21: 323-331.
  39. Zhao L, Zhang X, Tan T. 2008. Influence of various glucose/xylose mixtures on ethanol production by Pachysolen tannophilus. Biomass Bioenergy 32: 1156-1161. https://doi.org/10.1016/j.biombioe.2008.02.011

Cited by

  1. Ethanol Production from Glycerol Using Immobilized Pachysolen tannophilus During Microaerated Repeated-Batch Fermentor Culture vol.25, pp.3, 2013, https://doi.org/10.4014/jmb.1409.09030
  2. Net primary productivity, biofuel production and CO2 emissions reduction potential of Ulva sp. (Chlorophyta) biomass in a coastal area of the Eastern Mediterranean vol.148, pp.None, 2013, https://doi.org/10.1016/j.enconman.2017.06.066