DOI QR코드

DOI QR Code

The Influence of the N-Terminal Region of Antimicrobial Peptide Pleurocidin on Fungal Apoptosis

  • Choi, Hyemin (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Lee, Dong Gun (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University)
  • Received : 2013.06.07
  • Accepted : 2013.07.27
  • Published : 2013.10.28

Abstract

In our previous study, the 25-mer antimicrobial peptide pleurocidin (Ple) had been thought to induce apoptosis in Candida albicans. This study demonstrated that reactive oxygen species (ROS) production was a major cause of Ple-induced apoptosis. Four truncated analogs were synthesized to understand the functional roles in the N- and C-terminal regions of Ple on the apoptosis. Ple, Ple (4-25), Ple (1-22), and Ple (1-19) produced ROS, including hydroxyl radicals, on the order of [Ple > Ple (1-22) > Ple (4-25) > Ple (1-19)], whereas Ple (7-25) did not induce any ROS production. The results suggested that the N-terminal deletion affected the ROS-inducing activities much more than that of the C-terminal deletion, and net hydrophobicity [Ple > Ple (1-22) > Ple (4-25) > Ple (1-19) > Ple (7-25)] was related to ROS generation rather than other primary factors like net charge. Hence, we focused on the N-terminal-truncated peptides, Ple (4-25) and Ple (7-25), and examined other apoptotic features, including mitochondrial membrane depolarization, caspase activation, phosphatidylserine externalization, and DNA and nuclear fragmentation. The results also confirmed the disappearance of apoptotic activity of Ple (7-25) by the truncation of the N-terminal region (1-6) and the specific activity patterns between Ple and analogs. In conclusion, the N-terminal region of Ple played an important role in apoptosis.

Keywords

References

  1. Aerts AM, Carmona-Gutierrez D, Lefevre S, Govaert G, Francois IE, Madeo F, et al. 2009. The antifungal plant defensin RsAFP2 from radish induces apoptosis in a metacaspase independent way in Candida albicans. FEBS Lett. 583: 2513-2516. https://doi.org/10.1016/j.febslet.2009.07.004
  2. Bossy-Wetzel E, Newmeyer DD, Green DR. 1998. Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVDspecific caspase activation and independently of mitochondrial transmembrane depolarization. EMBO J. 17: 37-49. https://doi.org/10.1093/emboj/17.1.37
  3. Brogden KA. 2005. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3: 238-250. https://doi.org/10.1038/nrmicro1098
  4. Cho J, Lee DG. 2011. Oxidative stress by antimicrobial peptide pleurocidin triggers apoptosis in Candida albicans. Biochimie 93: 1873-1879. https://doi.org/10.1016/j.biochi.2011.07.011
  5. Cole AM, Weis P, Diamond G. 1997. Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder. J. Biol. Chem. 272: 12008-12013. https://doi.org/10.1074/jbc.272.18.12008
  6. Eisenberg T, Büttner S, Kroemer G, Madeo F. 2007. The mitochondrial pathway in yeast apoptosis. Apoptosis 12: 1011-1123. https://doi.org/10.1007/s10495-007-0758-0
  7. Fehlbaum P, Bulet P, Chernysh S, Briand JP, Roussel JP, Letellier L, et al. 1996. Structure-activity analysis of thanatin, a 21-residue inducible insect defense peptide with sequence homology to frog skin antimicrobial peptides. Proc. Natl. Acad. Sci. USA 93: 1221-1225. https://doi.org/10.1073/pnas.93.3.1221
  8. Fu X, Wan S, Lyu YL, Liu LF, Qi H. 2008. Etoposide induces ATM-dependent mitochondrial biogenesis through AMPK activation. PLoS One 3: e2009. https://doi.org/10.1371/journal.pone.0002009
  9. Hoskin DW, Ramamoorthy A. 2008. Studies on anticancer activities of antimicrobial peptides. Biochim. Biophys. Acta 1778: 357-375. https://doi.org/10.1016/j.bbamem.2007.11.008
  10. Jung HJ, Park Y, Sung WS, Suh BK, Lee J, Hahm KS, et al. 2007. Fungicidal effect of pleurocidin by membrane-active mechanism and design of enantiomeric analogue for proteolytic resistance. Biochim. Biophys. Acta 1768: 1400-1405. https://doi.org/10.1016/j.bbamem.2007.02.024
  11. Kanthawong S, Bolscher JG, Veerman EC, van Marle J, Nazmi K, Wongratanacheewin S, et al. 2010. Antimicrobial activities of LL-37 and its truncated variants against Burkholderia thailandensis. Int. J. Antimicrob. Agents 36: 447-452. https://doi.org/10.1016/j.ijantimicag.2010.06.031
  12. Lee J, Hwang JS, Hwang IS, Cho J, Lee E, Kim Y, et al. 2012. Coprisin-induced antifungal effects in Candida albicans correlate with apoptotic mechanisms. Free Radic. Biol. Med. 52: 2302-2311. https://doi.org/10.1016/j.freeradbiomed.2012.03.012
  13. Li M, Wu RS, Tsai JS. 2003. DAPI derivative: a fluorescent DNA dye that can be covalently attached to biomolecules. Bioorg. Med. Chem. Lett. 13: 4351-4354. https://doi.org/10.1016/j.bmcl.2003.09.038
  14. Madeo F, Frohlich E, Frohlich KU. 1997. A yeast mutant showing diagnostic markers of early and late apoptosis. J. Cell Biol. 139: 729-734. https://doi.org/10.1083/jcb.139.3.729
  15. Madeo F, Herker E, Maldener C, Wissing S, Lachelt S, Herlan M, et al. 2002. A caspase-related protease regulates apoptosis in yeast. Mol. Cell 9: 911-917. https://doi.org/10.1016/S1097-2765(02)00501-4
  16. Merrifield B. 1986. Solid phase synthesis. Science 232: 341-347. https://doi.org/10.1126/science.3961484
  17. Miao H, Zhao L, Li C, Shang Q, Lu H, Fu Z, et al. 2012. Inhibitory effect of Shikonin on Candida albicans growth. Biol. Pharm. Bull. 35: 1956-1963. https://doi.org/10.1248/bpb.b12-00338
  18. Morton CO, Dos Santos SC, Coote P. 2007. An amphibianderived, cationic, alpha-helical antimicrobial peptide kills yeast by caspase-independent but AIF-dependent programmed cell death. Mol. Microbiol. 65: 494-507. https://doi.org/10.1111/j.1365-2958.2007.05801.x
  19. Park Y, Lee DG, Kim HN, Kim HK, Woo ER, Choi CH, et al. 2005. Importance of the length of the N- and C-terminal regions of Helicobacter pylori ribosomal protein L1 (RPL1) on its antimicrobial activity. Biotechnol. Lett. 24: 1209-1215.
  20. Pereira C, Silva RD, Saraiva L, Johansson B, Sousa MJ, Corte-Real M. 2008. Mitochondria-dependent apoptosis in yeast. Biochim. Biophys. Acta 1783: 1286-1302. https://doi.org/10.1016/j.bbamcr.2008.03.010
  21. Peters BM, Shirtliff ME, Jabra-Rizk MA. 2010. Antimicrobial peptides: primeval molecules or future drugs? PLOS Pathog. 6: e1001067. https://doi.org/10.1371/journal.ppat.1001067
  22. Phillips AJ, Sudbery I, Ramsdale M. 2003. Apoptosis induced by environmental stresses and amphotericin B in Candida albicans. Proc. Natl. Acad. Sci. USA 100: 14327-14332. https://doi.org/10.1073/pnas.2332326100
  23. Ranganathan S, Harmison GG, Meyertholen K, Pennuto M, Burnett BG, Fischbeck KH. 2009. Mitochondrial abnormalities in spinal and bulbar muscular atrophy. Hum. Mol. Genet. 18: 27-42. https://doi.org/10.1093/hmg/ddp070
  24. Rollet-Labelle E, Grange MJ, Elbim C, Marquetty C, Gougerot-Pocidalo MA, Pasquier C. 1998. Hydroxyl radical as a potential intracellular mediator of polymorphonuclear neutrophil apoptosis. Free Radic. Biol. Med. 24: 563-572. https://doi.org/10.1016/S0891-5849(97)00292-X
  25. Setsukinai K, Urano Y, Kakinuma K, Majima HJ, Nagano T. 2003. Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. J. Biol. Chem. 278: 3170-3175. https://doi.org/10.1074/jbc.M209264200
  26. Sheppard R. 2003. The fluorenylmethoxycarbonyl group in solid phase synthesis. J. Pept. Sci. 9: 545-552. https://doi.org/10.1002/psc.479
  27. Wadskog I, Maldener C, Proksch A, Madeo F, Adler L. 2004. Yeast lacking the SRO7/SOP1-encoded tumor suppressor homologue show increased susceptibility to apoptosis-like cell death on exposure to NaCl stress. Mol. Biol. Cell 15: 1436-1444.
  28. Yao G, Ling L, Luan J, Ye D, Zhu P. 2007. Nonylphenol induces apoptosis of Jurkat cells by a caspase-8 dependent mechanism. Int. Immunopharmacol. 7: 444-453. https://doi.org/10.1016/j.intimp.2006.11.013
  29. Yeaman MR, Yount NY. 2003. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 55: 27-55. https://doi.org/10.1124/pr.55.1.2
  30. Zhang L, Rozek A, Hancock RE. 2001. Interaction of cationic antimicrobial peptides with model membranes. J. Biol. Chem. 276: 35714-35722. https://doi.org/10.1074/jbc.M104925200
  31. Zunino SJ, Ducore JM, Storms DH. 2007. Parthenolide induces significant apoptosis and production of reactive oxygen species in high-risk pre-B leukemia cells. Cancer Lett. 254: 119-127. https://doi.org/10.1016/j.canlet.2007.03.002

Cited by

  1. Exploitation of Reactive Oxygen Species by Fungi: Roles in Host-Fungus Interaction and Fungal Development vol.24, pp.11, 2013, https://doi.org/10.4014/jmb.1407.07072
  2. Antimicrobial Peptides from Fish vol.7, pp.3, 2013, https://doi.org/10.3390/ph7030265
  3. Novel antimicrobial anionic cecropins from the spruce budworm feature a poly‐L‐aspartic acid C‐terminus vol.89, pp.9, 2013, https://doi.org/10.1002/prot.26142
  4. Antifungal Mechanism of Vip3Aa, a Vegetative Insecticidal Protein, against Pathogenic Fungal Strains vol.10, pp.12, 2021, https://doi.org/10.3390/antibiotics10121558