DOI QR코드

DOI QR Code

Gene Expression Profiling of Intrahepatic Cholangiocarcinoma

  • Subrungruang, Ittisak (Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University) ;
  • Thawornkuno, Charin (Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University) ;
  • Chawalitchewinkoon-Petmitr, Porntip (Department of Protozoology, Faculty of Tropical Medicine, Mahidol University) ;
  • Pairojkul, Chawalit (Department of Pathology, Faculty of Medicine, Khon Kaen University) ;
  • Wongkham, Sopit (Department of Biochemistry, Faculty of Medicine, Khon Kaen University) ;
  • Petmitr, Songsak (Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University)
  • Published : 2013.01.31

Abstract

Intrahepatic cholangiocarcinoma (ICC) is ranked as one of the top five causes of cancer-related deaths. ICC in Thai patients is associated with infection with the liver fluke, Opisthorchis viverrini, but the molecular basis for development remains unclear. The present study employed a microarray approach to compare gene expression profiles of ICCs and normal liver tissues from the same patients residing in Northeast Thailand, a region with a high prevalence of liver fluke infection. In ICC samples, 2,821 and 1,361 genes were found to be significantly up- and down-regulated respectively (unpaired t-test, p<0.05; fold-change ${\gep}2.0$). For validation of the microarray results, 7 up-regulated genes (FXYD3, GPRC5A, CEACAM5, MUC13, EPCAM, TMC5, and EHF) and 3 down-regulated genes (CPS1, TAT, and ITIH1) were selected for confirmation using quantitative RT-PCR, resulting in 100% agreement. The metallothionine heavy metal pathway contains the highest percentage of genes with statistically significant changes in expression. This study provides exon-level expression profiles in ICC that should be fruitful in identifying novel genetic markers for classifying and possibly early diagnosis of this highly fatal type of cholangiocarcinoma.

Keywords

References

  1. Arriola E, Rodriguez-Pinilla SM, Lambros MB, et al (2007). Topoisomerase II alpha amplification may predict benefit from adjuvant anthracyclines in HER2 positive early breast cancer. Breast Cancer Res Treat, 106, 181-9. https://doi.org/10.1007/s10549-006-9492-5
  2. Bay BH, Jin R, Jayasurya A (2001). Analysis of metallothionein expression in human cancers. Acta Histochem Cytochem, 34, 171-6. https://doi.org/10.1267/ahc.34.171
  3. Bitu CC, Carrera M, Lopes MA, (2012). HOXB7 expression is a prognostic factor for oral squamous cell carcinoma. Histopathology, 60, 662-5. https://doi.org/10.1111/j.1365-2559.2011.04102.x
  4. Chee M, Yang R, Hubbell E, et al (1996). Accessing genetic information with high-density DNA arrays. Science, 274, 610-4. https://doi.org/10.1126/science.274.5287.610
  5. Cherian MG, Jayasurya A, Bay BH (2003). Metallothioneins in human tumors and potential roles in carcinogenesis. Mutat Res, 533, 201-9. https://doi.org/10.1016/j.mrfmmm.2003.07.013
  6. Dalkilic I, Schienda J, Thompson TG, Kunkel LM (2006). Loss of FilaminC (FLNC) results in severe defects in myogenesis and myotube structure. Mol Cell Biol, 26, 6522-34. https://doi.org/10.1128/MCB.00243-06
  7. Davenport JW, Fernandes ER, Harris LD, Neale GA, Goorha R (1999). The mouse mitotic checkpoint gene BUB1B, a novel bub1 family member, is expressed in a cell cycle-dependent manner. Genomics, 55, 113-7. https://doi.org/10.1006/geno.1998.5629
  8. Ehehalt F, Rummele P, Kersting S, et al (2011). Hepatocyte nuclear factor (HNF) 4alpha expression distinguishes ampullary cancer subtypes and prognosis after resection. Ann Surg, 254, 302-10. https://doi.org/10.1097/SLA.0b013e31821994a8
  9. Golub TR, Slonim DK, Tamayo P, et al (1999). Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 286, 531-7. https://doi.org/10.1126/science.286.5439.531
  10. Hamilton SR, Aaltonen LA, International Agency for Research on Cancer., World Health Organization. 2000. Pathology and genetics of tumours of the digestive system. Lyon: IARC Press. 314 p. pp.
  11. Hansel DE, Rahman A, Hidalgo M, et al (2003). Identification of novel cellular targets in biliary tract cancers using global gene expression technology. Am J Pathol, 163, 217-29. https://doi.org/10.1016/S0002-9440(10)63645-0
  12. Haswell-Elkins MR, Satarug S, Tsuda M, et al (1994). Liver fluke infection and cholangiocarcinoma: model of endogenous nitric oxide and extragastric nitrosation in human carcinogenesis. Mutat Res, 305, 241-52. https://doi.org/10.1016/0027-5107(94)90244-5
  13. Jacob ST, Majumder S, Ghoshal K (2002). Suppression of metallothionein-I/II expression and its probable molecular mechanisms. Environ Health Perspect, 110, 827-30. https://doi.org/10.1289/ehp.02110s5827
  14. Jin R, Chow VT, Tan PH, et al (2002). Metallothionein 2A expression is associated with cell proliferation in breast cancer. Carcinogenesis, 23, 81-6. https://doi.org/10.1093/carcin/23.1.81
  15. Jinawath N, Chamgramol Y, Furukawa Y, et al (2006). Comparison of gene expression profiles between Opisthorchis viverrini and non-Opisthorchis viverrini associated human intrahepatic cholangiocarcinoma. Hepatology, 44, 1025-38. https://doi.org/10.1002/hep.21330
  16. Kato I, Kuroishi T, Tominaga S (1990). Descriptive epidemiology of subsites of cancers of the liver, biliary tract and pancreas in Japan. Jpn J Clin Oncol, 20, 232-7.
  17. Khan SA, Thomas HC, Davidson BR, Taylor-Robinson SD (2005). Cholangiocarcinoma. Lancet, 366, 1303-14. https://doi.org/10.1016/S0140-6736(05)67530-7
  18. Kim IJ, Kang HC, Park JG (2004). Microarray applications in cancer research. Cancer Res Treat, 36, 207-13. https://doi.org/10.4143/crt.2004.36.4.207
  19. Kurathong S, Lerdverasirikul P, Wongpaitoon V, et al (1985). Opisthorchis viverrini infection and cholangiocarcinoma. A prospective, case-controlled study. Gastroenterology, 89, 151-6
  20. Liao WT, Jiang D, Yuan J, et al (2011). HOXB7 as a prognostic factor and mediator of colorectal cancer progression. Clin Cancer Res, 17, 3569-78. https://doi.org/10.1158/1078-0432.CCR-10-2533
  21. Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25, 402-8. https://doi.org/10.1006/meth.2001.1262
  22. McAlpine PJ, Shows TB (1990). Nomenclature for human homeobox genes. Genomics, 7, 460. https://doi.org/10.1016/0888-7543(90)90186-X
  23. McLean L, Patel T (2006). Racial and ethnic variations in the epidemiology of intrahepatic cholangiocarcinoma in the United States. Liver Int, 26, 1047-53. https://doi.org/10.1111/j.1478-3231.2006.01350.x
  24. Mosconi S, Beretta GD, Labianca R, et al (2009). Cholangiocarcinoma. Crit Rev Oncol Hematol, 69, 259-70. https://doi.org/10.1016/j.critrevonc.2008.09.008
  25. Nguyen A, Jing Z, Mahoney PS, et al (2000). In vivo gene expression profile analysis of metallothionein in renal cell carcinoma. Cancer Lett, 160, 133-40. https://doi.org/10.1016/S0304-3835(00)00534-6
  26. Obama K, Ura K, Li M, et al (2005). Genome-wide analysis of gene expression in human intrahepatic cholangiocarcinoma. Hepatology, 41, 1339-48. https://doi.org/10.1002/hep.20718
  27. Parkin DM, Srivatanakul P, Khlat M, et al (1991). Liver cancer in Thailand. I. A case-control study of cholangiocarcinoma. Int J Cancer, 48, 323-8. https://doi.org/10.1002/ijc.2910480302
  28. Rizzardi C, Torelli L, Barresi E, et al (2011). BUBR1 expression in oral squamous cell carcinoma and its relationship to tumor stage and survival. Head Neck, 33, 727-33. https://doi.org/10.1002/hed.21532
  29. Satarug S, Haswell-Elkins MR, Tsuda M, et al (1996). Thiocyanate-independent nitrosation in humans with carcinogenic parasite infection. Carcinogenesis, 17, 1075-81. https://doi.org/10.1093/carcin/17.5.1075
  30. Schmidt CJ, Jubier MF, Hamer DH (1985). Structure and expression of two human metallothionein-I isoform genes and a related pseudogene. J Biol Chem, 260, 7731-7.
  31. Sriamporn S, Pisani P, Pipitgool V, et al (2004). Prevalence of Opisthorchis viverrini infection and incidence of cholangiocarcinoma in Khon Kaen, Northeast Thailand. Trop Med Int Health, 9, 588-94. https://doi.org/10.1111/j.1365-3156.2004.01234.x
  32. Sripa B, Pairojkul C (2008). Cholangiocarcinoma: lessons from Thailand. Curr Opin Gastroenterol, 24, 349-56. https://doi.org/10.1097/MOG.0b013e3282fbf9b3
  33. Stennard FA, Holloway AF, Hamilton J, West AK (1994). Characterisation of six additional human metallothionein genes. Biochim Biophys Acta, 1218, 357-65. https://doi.org/10.1016/0167-4781(94)90189-9
  34. Stossel TP, Condeelis J, Cooley L, et al (2001). Filamins as integrators of cell mechanics and signalling. Nat Rev Mol Cell Biol, 2, 138-45. https://doi.org/10.1038/35052082
  35. Taylor-Robinson SD, Foster GR, Arora S, Hargreaves S, Thomas HC (1997). Increase in primary liver cancer in the UK, 1979-94. Lancet, 350, 1142-3.
  36. Thamavit W, Pairojkul C, Tiwawech D, et al (1993). Promotion of cholangiocarcinogenesis in the hamster liver by bile duct ligation after dimethylnitrosamine initiation. Carcinogenesis, 14, 2415-7. https://doi.org/10.1093/carcin/14.11.2415
  37. Thamavit W, Pairojkul C, Tiwawech D, Shirai T, Ito N (1994). Strong promoting effect of Opisthorchis viverrini infection on dimethylnitrosamine-initiated hamster liver. Cancer Lett, 78, 121-5. https://doi.org/10.1016/0304-3835(94)90040-X
  38. Ustundag Y, Bayraktar Y (2008). Cholangiocarcinoma: a compact review of the literature. World J Gastroenterol, 14, 6458-66. https://doi.org/10.3748/wjg.14.6458
  39. Vatanasapt V, Uttaravichien T, Mairiang EO, et al (1990). Cholangiocarcinoma in north-east Thailand. Lancet, 335, 116-7.
  40. Watt PM, Hickson ID (1994). Structure and function of type II DNA topoisomerases. Biochem J, 303, 681-95.
  41. West AK, Stallings R, Hildebrand CE, et al (1990). Human metallothionein genes: structure of the functional locus at 16q13. Genomics, 8, 513-8. https://doi.org/10.1016/0888-7543(90)90038-V
  42. West J, Wood H, Logan RF, Quinn M, Aithal GP (2006). Trends in the incidence of primary liver and biliary tract cancers in England and Wales 1971-2001. Br J Cancer, 94, 1751-8. https://doi.org/10.1038/sj.bjc.6603127

Cited by

  1. MACC1 – a novel target for solid cancers vol.17, pp.9, 2013, https://doi.org/10.1517/14728222.2013.815727
  2. Transcriptional Profiles of Peripheral Blood Leukocytes Identify Patients with Cholangiocarcinoma and Predict Outcome vol.15, pp.10, 2014, https://doi.org/10.7314/APJCP.2014.15.10.4217
  3. An Interleukin-6 Receptor Polymorphism is Associated with Opisthorchiasis-Linked Cholangiocarcinoma Risk in Thailand vol.15, pp.13, 2014, https://doi.org/10.7314/APJCP.2014.15.13.5443
  4. Analysis of Different Ways of Drainage for Obstructive Jaundice Caused by Hilar Cholangiocarcinoma vol.15, pp.14, 2014, https://doi.org/10.7314/APJCP.2014.15.14.5617
  5. Novel Serum Biomarkers to Differentiate Cholangiocarcinoma from Benign Biliary Tract Diseases Using a Proteomic Approach vol.2015, pp.1875-8630, 2015, https://doi.org/10.1155/2015/105358
  6. Metastasis-associated in colon cancer 1 is an independent prognostic biomarker for survival in klatskin tumor patients vol.62, pp.3, 2015, https://doi.org/10.1002/hep.27885
  7. Ion channels expression and function are strongly modified in solid tumors and vascular malformations vol.14, pp.1, 2016, https://doi.org/10.1186/s12967-016-1038-y
  8. Surveillance of Populations at Risk of Cholangiocarcinoma Development in Rural Communities of Thailand Using the Korat-CCA Verbal Screening Test vol.17, pp.4, 2016, https://doi.org/10.7314/APJCP.2016.17.4.2205
  9. Long non-coding RNAs and genes contributing to the generation of cancer stem cells in hepatocellular carcinoma identified by RNA sequencing analysis vol.36, pp.5, 2016, https://doi.org/10.3892/or.2016.5120
  10. Meta-analysis of gene expression profiles identifies differential biomarkers for hepatocellular carcinoma and cholangiocarcinoma vol.37, pp.9, 2016, https://doi.org/10.1007/s13277-016-5186-8
  11. GPRC5A is a potential oncogene in pancreatic ductal adenocarcinoma cells that is upregulated by gemcitabine with help from HuR vol.7, pp.7, 2016, https://doi.org/10.1038/cddis.2016.169
  12. Robust Nonnegative Matrix Factorization via Joint Graph Laplacian and Discriminative Information for Identifying Differentially Expressed Genes vol.2017, pp.1099-0526, 2017, https://doi.org/10.1155/2017/4216797
  13. Genome-wide in vivo RNAi screen identifies ITIH5 as a metastasis suppressor in pancreatic cancer vol.34, pp.3-4, 2017, https://doi.org/10.1007/s10585-017-9840-3
  14. Expression and clinical significance of FXYD3 in endometrial cancer vol.8, pp.2, 2014, https://doi.org/10.3892/ol.2014.2170
  15. GPRC5A: An Emerging Biomarker in Human Cancer vol.2018, pp.2314-6141, 2018, https://doi.org/10.1155/2018/1823726
  16. The roles of metallothioneins in carcinogenesis vol.11, pp.1, 2018, https://doi.org/10.1186/s13045-018-0645-x
  17. Biomarkers for the Diagnosis of Cholangiocarcinoma: A Systematic Review vol.98, pp.6, 2018, https://doi.org/10.4269/ajtmh.17-0879