DOI QR코드

DOI QR Code

The COP9 Signalosome Network in Eukaryotic Microorganisms

진핵 미생물에서의 COP9 signalosome의 역할

  • Cheon, Yeongmi (Department of Microbiology and Molecular Biology, Chungnam National University) ;
  • Lee, Soojin (Department of Microbiology and Molecular Biology, Chungnam National University)
  • 천영미 (충남대학교 생명시스템과학대학 미생물.분자생명과학과) ;
  • 이수진 (충남대학교 생명시스템과학대학 미생물.분자생명과학과)
  • Received : 2013.02.04
  • Accepted : 2013.03.08
  • Published : 2013.03.31

Abstract

COP9 signalosome (CSN), which is originally identified as the regulator of the photomorphogenic development in plant, is highly conserved protein complex in diverse eukaryotic organisms. Most eukaryotic CSN complex is composed of 8 subunits, which is structurally and functionally similar to the lid subunit of 26S proteasome and eIF3 translation initiation complex. CSN play important functions in the regulation of cell cycle and checkpoint response by controlling Cullin-Ring E3 ubiquitin ligases (CRL) activities. CSN exhibits an isopeptidase activity which cleaves the neddylated moiety of cullin components. In fission yeast, S-phase cell cycle progression was delayed and the sensitivity to g-ray or UV was increased in CSN1 and CSN2 deletion mutants, indicating that yeast CSN is also involved in the checkpoint regulation. CSN in fungal system more closely resembles that of the higher organisms in the structure and assembly of their components. Functionally, CSN is associated with the regulation of conidiation rhythms in Neurospora crassa and the sexual development in Aspsergillus nidulans. Recent studies also revealed that CSN functions as an essential cell cycle regulator, playing key roles in the regulation of DNA replication and DNA damage response in Aspergillus. Overall, CSN of microorganisms, such as fission yeast and fungi, share functionally common aspects with higher organisms, implying that they can be useful tools to study the role of CSN in the CRL-mediated diverse cellular activities.

Cop9 signalosome(CSN)은 최초 식물 발달 과정에서의 빛에 의한 전사 조절 과정에서의 억제 유전자로 처음 분리된 이후 이들이 다양한 진핵 생물 에서 매우 잘 보존되어 있음이 알려지게 되었다. 이들은 대부분 8개의 subunit으로 구성되며 26S proteasome lid와 eIF3와 구조적으로는 물론 기능적으로도 유사성을 보인다고 알려져 있다. 이들은 특히 Cullin-Ring ubiquitin ligases(CRL)의 구성 요소인 Cullin의 deneddylation을 매개하여 ubiquitin ligase의 활성을 조절한다고 알려져 있으며, 또한 세포 주기 및 checkpoint 조절에 관여한다고 보고되었다. 분열효모의 경우 CSN1 및 CSN2 결손 세포에서 S-phase로서의 진행이 지연됨이 관찰되었고 감마선 혹은 UV에 좀더 민감해지는 현상이 관찰되어 CSN이 checkpoint 조절에 관여한다는 것을 보여주었다. 곰팡이의 CSN 경우 구조적으로 더욱 상위 개체들의 그것과 더욱 유사한데, CSN이 생체 시계 리듬, 빛과 연관한 호르몬 생산, 곰팡이의 발달 과정 및 생식 주기를 조절함이 보고되었다. 또한 Aspergillus nidulans의 경우 상위개체에서 보여준 DNA 합성 및 손상, 세포 주기 조절에서의 기능이 알려지면서 CSN은 곰팡이 생활사에 필수적인 여러 과정들을 조절하는 중요한 인자임을 알 수 있다. 이로써 식물이나 포유동물 등에서 보고되었던 CSN의 주요 기능을 미생물에서도 대부분 공유하고 있음을 알 수 있고 이들이 CRL을 통한 주요 세포 활성 조절 연구에 좋은 툴로서 활용할 수 있음을 시사하고 있다.

Keywords

References

  1. Bartek, J. and Lukas, J. 2007. DNA damage checkpoints: from initiation to recovery or adaptation. Curr. Opin. Cell Biol. 19: 238-245. https://doi.org/10.1016/j.ceb.2007.02.009
  2. Bech-Otschir, D., Seeger, M. and Dubiel, W. 2002. The COP9 signalosome: at the interface between signal transduction and ubiquitin-dependent proteolysis. J. Cell Sci. 115:467-473.
  3. Braus, G. H., Irniger, S. and Bayram, O. 2010. Fungal development and the COP9 signalosome. Curr. Opin. Microbiol. 13:672-676. https://doi.org/10.1016/j.mib.2010.09.011
  4. Busch, S., Eckert, S. E., Krappmann, S. and Braus, G. H. 2004. The COP9 signalosome is an essential regulator of development in the filamentous fungus Aspergillus nidulans. Mol. Microbiol. 49:717-730. https://doi.org/10.1046/j.1365-2958.2003.03612.x
  5. Busch, S., Schwier, E. U., Nahlik, K., Bayram, O., Helmstaedt, K., Draht, O. W., Krappmann, S., Valerius, O., Lipscomb, W. N. and Braus, G. H. 2007. An eight-subunit COP9 signalosome with an intact JAMM motif is required for fungal fruit body formation. Proc. Natl. Acad. Sci. USA 104:8089-8094. https://doi.org/10.1073/pnas.0702108104
  6. Cope, G. A., Suh, G. S., Aravind, L., Schwarz, S. E., Zipursky, S. L., Koonin, E. V. and Deshaies, R. J. 2002. Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1. Science 298:608-611. https://doi.org/10.1126/science.1075901
  7. Dohmann, E. M., Levesque, M. P., De Veylder, L., Reichardt, I., Jurgens, G., Schmid, M. and Schwechheimer, C. 2008. The Arabidopsis COP9 signalosome is essential for G2 phase progression and genomic stability. Development 135:2013-2022. https://doi.org/10.1242/dev.020743
  8. Fagundes, M. R., Lima, J. F., Savoldi, M., Malavazi, I., Larson, R. E., Goldman, M. H. and Goldman, G. H. 2004. The Aspergillus nidulans npkA gene encodes a Cdc2-related kinase that genetically interacts with the UvsBATR kinase. Genetics 167: 1629-1641. https://doi.org/10.1534/genetics.103.024166
  9. Fu, H., Reis, N., Lee, Y., Glickman, M. H. and Vierstra, R. D. 2001. Subunit interaction maps for the regulatory particle of the 26S proteasome and the COP9 signalosome. EMBO J. 20: 7096-7107. https://doi.org/10.1093/emboj/20.24.7096
  10. Fukumoto, A., Tomoda, K., Kubota, M., Kato, J. Y. and Yoneda-Kato, N. 2005. Small Jab1-containing subcomplex is regulated in an anchorage- and cell cycle-dependent manner, which is abrogated by ras transformation. FEBS Lett. 579:1047-1054. https://doi.org/10.1016/j.febslet.2004.12.076
  11. Fukumoto, A., Tomoda, K., Yoneda-Kato, N., Nakajima, Y. and Kato, J. Y. 2006. Depletion of Jab1 inhibits proliferation of pancreatic cancer cell lines. FEBS Lett. 580:5836-5844. https://doi.org/10.1016/j.febslet.2006.09.042
  12. Groisman, R., Polanowska, J., Kuraoka, I., Sawada, J., Saijo, M., Drapkin, R., Kisselev, A. F., Tanaka, K. and Nakatani, Y. 2003. The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell 113:357-367. https://doi.org/10.1016/S0092-8674(03)00316-7
  13. Gusmaroli, G., Figueroa, P., Serino, G. and Deng, X. W. 2007. Role of the MPN subunits in COP9 signalosome assembly and activity and their regulatory interaction with Arabidopsis Cullin3-based E3 ligases. Plant Cell 19:564-581. https://doi.org/10.1105/tpc.106.047571
  14. Hannss, R. and Dubiel, W. 2011. COP9 signalosome function in the DDR. FEBS Lett. 585: 2845-2852. https://doi.org/10.1016/j.febslet.2011.04.027
  15. He, Q., Cheng, P. and Liu, Y. 2005. The COP9 signalosome regulates the Neurospora circadian clock by controlling the stability of the SCFFWD-1 complex. Genes Dev. 19:1518-1531. https://doi.org/10.1101/gad.1322205
  16. Higa, L. A., Mihaylov, I. S., Banks, D. P., Zheng, J. and Zhang, H. 2003. Radiation-mediated proteolysis of CDT1 by CUL4-ROC1 and CSN complexes constitutes a new checkpoint. NatCell Biol. 5:1008-1015.
  17. Huang, J., Yuan, H., Lu, C., Liu, X., Cao, X. and Wan, M. 2007. Jab1 mediates protein degradation of the Rad9-Rad1-Hus1 checkpoint complex. J. Mol. Biol. 371:514-527. https://doi.org/10.1016/j.jmb.2007.05.095
  18. Jackson, S. and Xiong, Y. 2009. CRL4s: the CUL4-RING E3 ubiquitin ligases. Trends Biochem. Sci. 34:562-570. https://doi.org/10.1016/j.tibs.2009.07.002
  19. Jia, S., Kobayashi, R. and Grewal, S. I. 2005. Ubiquitin ligase component Cul4 associates with Clr4 histone methyltransferaseto assemble heterochromatin. Nat. Cell Biol. 7:1007-1013. https://doi.org/10.1038/ncb1300
  20. Kato, J. Y. and Yoneda-Kato, N. 2009. Mammalian COP9 signalosome. Genes Cells 14:1209-1225. https://doi.org/10.1111/j.1365-2443.2009.01349.x
  21. Kim, T., Hofmann, K., von Arnim, A. G. and Chamovitz, D. A. 2001. PCI complexes: pretty complex interactions in diverse signaling pathways. Trends Plant Sci. 6:379-386. https://doi.org/10.1016/S1360-1385(01)02015-5
  22. Lima, J. F., Malavazi, I., von Zeska Kress Fagundes, M. R., Savoldi, M., Goldman, M. H., Schwier, E., Braus, G. H. and Goldman, G. H. 2005. The csnD/csnE signalosome genes are involved in the Aspergillus nidulans DNA damage response. Genetics 171:1003-1015. https://doi.org/10.1534/genetics.105.041376
  23. Liu, C., Powell, K. A., Mundt, K., Wu, L., Carr, A. M. and Caspari, T. 2003. Cop9/signalosome subunits and Pcu4 regulate ribonucleotide reductase by both checkpoint-dependent and-independent mechanisms. Genes Dev. 17:1130-1140. https://doi.org/10.1101/gad.1090803
  24. Liu, C., Poitelea, M., Watson, A., Yoshida, S.-h., Shimoda, C., Holmberg, C., Nielsen, O. and Carr, A. M. 2005. Transactivationof S. pombe cdt2+ stimulates a Pcu4-Ddb1-CSN ub ligase. pdf. EMBO J. 24:3940-3951. https://doi.org/10.1038/sj.emboj.7600854
  25. Lyapina, S., Cope, G., Shevchenko, A., Serino, G., Tsuge, T., Zhou, C., Wolf, D. A., Wei, N. and Deshaies, R. J. 2001. Promotion of NEDD-CUL1 conjugate cleavage by COP9 signalosome. Science 292:1382-1385. https://doi.org/10.1126/science.1059780
  26. Maytal-Kivity, V., Piran, R., Pick, E., Hofmann1, K. and Glickman, M. H. 2002. COP9 signalosome components playa role in the mating pheromone response of S. cerevisiae. EMBO Rep. 3:1215-1221. https://doi.org/10.1093/embo-reports/kvf235
  27. Maytal-Kivity, V., Piran, R., Pick, E., Hofmann, K. and Glickman, M. H. 2002. COP9 signalosome components play a role in the mating pheromone response of S. cerevisiae. EMBO Rep.3:1215-1221. https://doi.org/10.1093/embo-reports/kvf235
  28. Mundt, K. E., Porte, J., Murray, J. M., Brikos, C., Christensen, P. U., Caspari, T., Hagan, I. M., Millar, J. B. A., Simanis, V. and Hofmann, K. 1999. The COPp sig complex is conserved in fission yeast and has a role in S phase. Curr. Biol. 9:1427-1430. https://doi.org/10.1016/S0960-9822(00)80091-3
  29. Purschwitz, J., ller, S. M., Kastner, C., Schöser, M., Haas, H., Espeso, E. A., Atoui, A., Calvo, A. M. and Fischer, R. 2008. Functional and physical interaction of blue- and red-light sensors in Aspergillus nidulans. Curr. Biol. 18:255-259. https://doi.org/10.1016/j.cub.2008.01.061
  30. Rodriguez-Romero, J., Hedtke, M., Kastner, C., Muller, S. and Fischer, R. 2010. Fungi, hidden in soil or up in the air: light makes a difference. Annu Rev. Microbiol. 64:585-610. https://doi.org/10.1146/annurev.micro.112408.134000
  31. Seeger, M., Kraft, R., Ferrell, K., Bech-Otschir, D., Dumdey, R., Schade, R., Gordon, C., Naumann, M. and Dubiel, W. 1998. A novel protein complex involved in signal transduction possessing similarities to 26S proteasome subunits. FASEB J.12:469-478. https://doi.org/10.1096/fasebj.12.6.469
  32. Shackleford, T. J. and Claret, F. X. 2010. JAB1/CSN5: a new player in cell cycle control and cancer. Cell Div. 5:26. https://doi.org/10.1186/1747-1028-5-26
  33. Sullivan, J. A., Shirasu, K. and Deng, X. W. 2003. The diverse roles of ubiquitin and the 26S proteasome in the life of plants. Nat. Rev. Genet. 4948-958.
  34. Tanguy, G., Drevillon, L., Arous, N., Hasnain, A., Hinzpeter, A., Fritsch, J., Goossens, M. and Fanen, P. 2008. CSN5 binds to misfolded CFTR and promotes its degradation. Biochim. Biophys. Acta 1783:1189-1199. https://doi.org/10.1016/j.bbamcr.2008.01.010
  35. Tian, L., Peng, G., Parant, J. M., Leventaki, V., Drakos, E., Zhang, Q., Parker-Thornburg, J., Shackleford, T. J., Dai, H. and Lin, S. Y. 2010. Essential roles of Jab1 in cell survival, spontaneous DNA damage and DNA repair. Oncogene 29:6125-6137. https://doi.org/10.1038/onc.2010.345
  36. Tomoda, K., Kubota, Y., Arata, Y., Mori, S., Maeda, M., Tanaka, T., Yoshida, M., Yoneda-Kato, N. and Kato, J. Y. 2002. The cytoplasmic shuttling and subsequent degradation of p27Kip1 mediated by Jab1/CSN5 and the COP9 signalosome complex.J. Biol. Chem. 277:2302-2310. https://doi.org/10.1074/jbc.M104431200
  37. Uhle, S., Medalia, O., Waldron, R., Dumdey, R., Henklein, P., Bech-Otschir, D., Huang, X., Berse, M., Sperling, J. and Schade, R. 2003. Protein kinase CK2 and protein kinase D are associated with the COP9 signalosome. EMBO J. 22:1302-1312. https://doi.org/10.1093/emboj/cdg127
  38. Vierstra, R. D. 2003. The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends Plant Sci. 8:135-142. https://doi.org/10.1016/S1360-1385(03)00014-1
  39. von Arnim, A. G. 2003. On again-off again: COP9 signalosome turns the key on protein degradation. Curr. Opin. Plant Biol.6:520-529. https://doi.org/10.1016/j.pbi.2003.09.006
  40. Wang, X., Kang, D., Feng, S., Serino, G., Schwechheimer, C. and Wei, N. 2002. CSN1 N-terminal-dependent activity is requiredfor Arabidopsis development but not for Rub1/Nedd8 deconjugation of cullins: a structure-function study of CSN1 subunit of COP9 signalosome. Mol. Biol. Cell 13:646-655. https://doi.org/10.1091/mbc.01-08-0427
  41. Wee, S., Hetfeld, B., Dubiel, W. and Wolf, D. A. 2002. Conservation of the COP9 signalosome in budding yeast. BMC Genetics. 3:15. https://doi.org/10.1186/1471-2156-3-15
  42. Wei, N. and Deng, X. W. (2003). The COP9 signalosome. Annu Rev. Cell Dev. Biol. 19:261-286.
  43. Wei, N., Chamovitz, D. A. and Deng, X. W. 1994. Arabidopsis COP9 is a component of a novel signaling complex mediating light control of development. Cell 78:117-124. https://doi.org/10.1016/0092-8674(94)90578-9
  44. Wei, N., Serino, G. and Deng, X. W. 2008. The COP9 signalosome: more than a protease. Trends Biochem. Sci. 33:592-600. https://doi.org/10.1016/j.tibs.2008.09.004
  45. Wei, Z., Zhang, P., Zhou, Z., Cheng, Z., Wan, M. and Gong, W. 2004. Crystal structure of human eIF3k, the first structure of eIF3 subunits. J. Biol. Chem. 279:34983-34990. https://doi.org/10.1074/jbc.M405158200
  46. Welcker, M. and Clurman, B. E. 2008. FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat. Rev. Cancer 8:83-93. https://doi.org/10.1038/nrc2290
  47. Yoshida, A., Yoneda-Kato, N., Panattoni, M., Pardi, R. and Kato, J. Y. 2010. CSN5/Jab1 controls multiple events in the mammaliancell cycle. FEBS Lett. 584:4545-4552. https://doi.org/10.1016/j.febslet.2010.10.039
  48. Zaidi, I. W., Rabut, G., Poveda, A., Scheel, H., Malmstrom, J., Ulrich, H., Hofmann, K., Pasero, P., Peter, M. and Luke, B. 2008. Rtt101 and Mms1 in budding yeast form a CUL4 (DDB1)-like ubiquitin ligase that promotes replication through damaged DNA. EMBO Rep. 9:1034-1040. https://doi.org/10.1038/embor.2008.155
  49. Zheng, J., Yang, X., Harrell, J. M., Ryzhikov, S., Shim, E. H., Lykke-Andersen, K., Wei, N., Sun, H., Kobayashi, R. and Zhang, H. 2002. CAND1 binds to unneddylated CUL1 and regulates the formation of SCF ubiquitin E3 ligase complex. Mol. Cell 10:1519-1526. https://doi.org/10.1016/S1097-2765(02)00784-0
  50. Zhou, C., Seibert, V., Geyer, R., Rhee, E., Lyapina, S., Cope, G., Deshaies, R. J. and Wolf, D. A. 2001. The fission yeast COP9 signalosome is involved in cullin modofication by ub-related Ned8p. BMC Biochem. 2: 7. https://doi.org/10.1186/1471-2091-2-7
  51. Zhou, C., Arslan, F., Wee, S., Krishnan, S., Ivanov, A. R., Oliva, A., Leatherwood, J. and Wolf, D. A. 2005. PCI proteins eIF3e and eIF3m define distinct translation initiation factor 3 complexes. BMC Biol. 3:14. https://doi.org/10.1186/1741-7007-3-14
  52. Zhou, Z., Wang, Y., Cai, G. and He, Q. 2012. Neurospora COP9 signalosome integrity plays major roles for hyphal growth, conidial development, and circadian function. PLoS Genet. 8: e1002712. https://doi.org/10.1371/journal.pgen.1002712