References
- Bartek, J. and Lukas, J. 2007. DNA damage checkpoints: from initiation to recovery or adaptation. Curr. Opin. Cell Biol. 19: 238-245. https://doi.org/10.1016/j.ceb.2007.02.009
- Bech-Otschir, D., Seeger, M. and Dubiel, W. 2002. The COP9 signalosome: at the interface between signal transduction and ubiquitin-dependent proteolysis. J. Cell Sci. 115:467-473.
- Braus, G. H., Irniger, S. and Bayram, O. 2010. Fungal development and the COP9 signalosome. Curr. Opin. Microbiol. 13:672-676. https://doi.org/10.1016/j.mib.2010.09.011
- Busch, S., Eckert, S. E., Krappmann, S. and Braus, G. H. 2004. The COP9 signalosome is an essential regulator of development in the filamentous fungus Aspergillus nidulans. Mol. Microbiol. 49:717-730. https://doi.org/10.1046/j.1365-2958.2003.03612.x
- Busch, S., Schwier, E. U., Nahlik, K., Bayram, O., Helmstaedt, K., Draht, O. W., Krappmann, S., Valerius, O., Lipscomb, W. N. and Braus, G. H. 2007. An eight-subunit COP9 signalosome with an intact JAMM motif is required for fungal fruit body formation. Proc. Natl. Acad. Sci. USA 104:8089-8094. https://doi.org/10.1073/pnas.0702108104
- Cope, G. A., Suh, G. S., Aravind, L., Schwarz, S. E., Zipursky, S. L., Koonin, E. V. and Deshaies, R. J. 2002. Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1. Science 298:608-611. https://doi.org/10.1126/science.1075901
- Dohmann, E. M., Levesque, M. P., De Veylder, L., Reichardt, I., Jurgens, G., Schmid, M. and Schwechheimer, C. 2008. The Arabidopsis COP9 signalosome is essential for G2 phase progression and genomic stability. Development 135:2013-2022. https://doi.org/10.1242/dev.020743
- Fagundes, M. R., Lima, J. F., Savoldi, M., Malavazi, I., Larson, R. E., Goldman, M. H. and Goldman, G. H. 2004. The Aspergillus nidulans npkA gene encodes a Cdc2-related kinase that genetically interacts with the UvsBATR kinase. Genetics 167: 1629-1641. https://doi.org/10.1534/genetics.103.024166
- Fu, H., Reis, N., Lee, Y., Glickman, M. H. and Vierstra, R. D. 2001. Subunit interaction maps for the regulatory particle of the 26S proteasome and the COP9 signalosome. EMBO J. 20: 7096-7107. https://doi.org/10.1093/emboj/20.24.7096
- Fukumoto, A., Tomoda, K., Kubota, M., Kato, J. Y. and Yoneda-Kato, N. 2005. Small Jab1-containing subcomplex is regulated in an anchorage- and cell cycle-dependent manner, which is abrogated by ras transformation. FEBS Lett. 579:1047-1054. https://doi.org/10.1016/j.febslet.2004.12.076
- Fukumoto, A., Tomoda, K., Yoneda-Kato, N., Nakajima, Y. and Kato, J. Y. 2006. Depletion of Jab1 inhibits proliferation of pancreatic cancer cell lines. FEBS Lett. 580:5836-5844. https://doi.org/10.1016/j.febslet.2006.09.042
- Groisman, R., Polanowska, J., Kuraoka, I., Sawada, J., Saijo, M., Drapkin, R., Kisselev, A. F., Tanaka, K. and Nakatani, Y. 2003. The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell 113:357-367. https://doi.org/10.1016/S0092-8674(03)00316-7
- Gusmaroli, G., Figueroa, P., Serino, G. and Deng, X. W. 2007. Role of the MPN subunits in COP9 signalosome assembly and activity and their regulatory interaction with Arabidopsis Cullin3-based E3 ligases. Plant Cell 19:564-581. https://doi.org/10.1105/tpc.106.047571
- Hannss, R. and Dubiel, W. 2011. COP9 signalosome function in the DDR. FEBS Lett. 585: 2845-2852. https://doi.org/10.1016/j.febslet.2011.04.027
- He, Q., Cheng, P. and Liu, Y. 2005. The COP9 signalosome regulates the Neurospora circadian clock by controlling the stability of the SCFFWD-1 complex. Genes Dev. 19:1518-1531. https://doi.org/10.1101/gad.1322205
- Higa, L. A., Mihaylov, I. S., Banks, D. P., Zheng, J. and Zhang, H. 2003. Radiation-mediated proteolysis of CDT1 by CUL4-ROC1 and CSN complexes constitutes a new checkpoint. NatCell Biol. 5:1008-1015.
- Huang, J., Yuan, H., Lu, C., Liu, X., Cao, X. and Wan, M. 2007. Jab1 mediates protein degradation of the Rad9-Rad1-Hus1 checkpoint complex. J. Mol. Biol. 371:514-527. https://doi.org/10.1016/j.jmb.2007.05.095
- Jackson, S. and Xiong, Y. 2009. CRL4s: the CUL4-RING E3 ubiquitin ligases. Trends Biochem. Sci. 34:562-570. https://doi.org/10.1016/j.tibs.2009.07.002
- Jia, S., Kobayashi, R. and Grewal, S. I. 2005. Ubiquitin ligase component Cul4 associates with Clr4 histone methyltransferaseto assemble heterochromatin. Nat. Cell Biol. 7:1007-1013. https://doi.org/10.1038/ncb1300
- Kato, J. Y. and Yoneda-Kato, N. 2009. Mammalian COP9 signalosome. Genes Cells 14:1209-1225. https://doi.org/10.1111/j.1365-2443.2009.01349.x
- Kim, T., Hofmann, K., von Arnim, A. G. and Chamovitz, D. A. 2001. PCI complexes: pretty complex interactions in diverse signaling pathways. Trends Plant Sci. 6:379-386. https://doi.org/10.1016/S1360-1385(01)02015-5
- Lima, J. F., Malavazi, I., von Zeska Kress Fagundes, M. R., Savoldi, M., Goldman, M. H., Schwier, E., Braus, G. H. and Goldman, G. H. 2005. The csnD/csnE signalosome genes are involved in the Aspergillus nidulans DNA damage response. Genetics 171:1003-1015. https://doi.org/10.1534/genetics.105.041376
- Liu, C., Powell, K. A., Mundt, K., Wu, L., Carr, A. M. and Caspari, T. 2003. Cop9/signalosome subunits and Pcu4 regulate ribonucleotide reductase by both checkpoint-dependent and-independent mechanisms. Genes Dev. 17:1130-1140. https://doi.org/10.1101/gad.1090803
- Liu, C., Poitelea, M., Watson, A., Yoshida, S.-h., Shimoda, C., Holmberg, C., Nielsen, O. and Carr, A. M. 2005. Transactivationof S. pombe cdt2+ stimulates a Pcu4-Ddb1-CSN ub ligase. pdf. EMBO J. 24:3940-3951. https://doi.org/10.1038/sj.emboj.7600854
- Lyapina, S., Cope, G., Shevchenko, A., Serino, G., Tsuge, T., Zhou, C., Wolf, D. A., Wei, N. and Deshaies, R. J. 2001. Promotion of NEDD-CUL1 conjugate cleavage by COP9 signalosome. Science 292:1382-1385. https://doi.org/10.1126/science.1059780
- Maytal-Kivity, V., Piran, R., Pick, E., Hofmann1, K. and Glickman, M. H. 2002. COP9 signalosome components playa role in the mating pheromone response of S. cerevisiae. EMBO Rep. 3:1215-1221. https://doi.org/10.1093/embo-reports/kvf235
- Maytal-Kivity, V., Piran, R., Pick, E., Hofmann, K. and Glickman, M. H. 2002. COP9 signalosome components play a role in the mating pheromone response of S. cerevisiae. EMBO Rep.3:1215-1221. https://doi.org/10.1093/embo-reports/kvf235
- Mundt, K. E., Porte, J., Murray, J. M., Brikos, C., Christensen, P. U., Caspari, T., Hagan, I. M., Millar, J. B. A., Simanis, V. and Hofmann, K. 1999. The COPp sig complex is conserved in fission yeast and has a role in S phase. Curr. Biol. 9:1427-1430. https://doi.org/10.1016/S0960-9822(00)80091-3
- Purschwitz, J., ller, S. M., Kastner, C., Schöser, M., Haas, H., Espeso, E. A., Atoui, A., Calvo, A. M. and Fischer, R. 2008. Functional and physical interaction of blue- and red-light sensors in Aspergillus nidulans. Curr. Biol. 18:255-259. https://doi.org/10.1016/j.cub.2008.01.061
- Rodriguez-Romero, J., Hedtke, M., Kastner, C., Muller, S. and Fischer, R. 2010. Fungi, hidden in soil or up in the air: light makes a difference. Annu Rev. Microbiol. 64:585-610. https://doi.org/10.1146/annurev.micro.112408.134000
- Seeger, M., Kraft, R., Ferrell, K., Bech-Otschir, D., Dumdey, R., Schade, R., Gordon, C., Naumann, M. and Dubiel, W. 1998. A novel protein complex involved in signal transduction possessing similarities to 26S proteasome subunits. FASEB J.12:469-478. https://doi.org/10.1096/fasebj.12.6.469
- Shackleford, T. J. and Claret, F. X. 2010. JAB1/CSN5: a new player in cell cycle control and cancer. Cell Div. 5:26. https://doi.org/10.1186/1747-1028-5-26
- Sullivan, J. A., Shirasu, K. and Deng, X. W. 2003. The diverse roles of ubiquitin and the 26S proteasome in the life of plants. Nat. Rev. Genet. 4948-958.
- Tanguy, G., Drevillon, L., Arous, N., Hasnain, A., Hinzpeter, A., Fritsch, J., Goossens, M. and Fanen, P. 2008. CSN5 binds to misfolded CFTR and promotes its degradation. Biochim. Biophys. Acta 1783:1189-1199. https://doi.org/10.1016/j.bbamcr.2008.01.010
- Tian, L., Peng, G., Parant, J. M., Leventaki, V., Drakos, E., Zhang, Q., Parker-Thornburg, J., Shackleford, T. J., Dai, H. and Lin, S. Y. 2010. Essential roles of Jab1 in cell survival, spontaneous DNA damage and DNA repair. Oncogene 29:6125-6137. https://doi.org/10.1038/onc.2010.345
- Tomoda, K., Kubota, Y., Arata, Y., Mori, S., Maeda, M., Tanaka, T., Yoshida, M., Yoneda-Kato, N. and Kato, J. Y. 2002. The cytoplasmic shuttling and subsequent degradation of p27Kip1 mediated by Jab1/CSN5 and the COP9 signalosome complex.J. Biol. Chem. 277:2302-2310. https://doi.org/10.1074/jbc.M104431200
- Uhle, S., Medalia, O., Waldron, R., Dumdey, R., Henklein, P., Bech-Otschir, D., Huang, X., Berse, M., Sperling, J. and Schade, R. 2003. Protein kinase CK2 and protein kinase D are associated with the COP9 signalosome. EMBO J. 22:1302-1312. https://doi.org/10.1093/emboj/cdg127
- Vierstra, R. D. 2003. The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends Plant Sci. 8:135-142. https://doi.org/10.1016/S1360-1385(03)00014-1
- von Arnim, A. G. 2003. On again-off again: COP9 signalosome turns the key on protein degradation. Curr. Opin. Plant Biol.6:520-529. https://doi.org/10.1016/j.pbi.2003.09.006
- Wang, X., Kang, D., Feng, S., Serino, G., Schwechheimer, C. and Wei, N. 2002. CSN1 N-terminal-dependent activity is requiredfor Arabidopsis development but not for Rub1/Nedd8 deconjugation of cullins: a structure-function study of CSN1 subunit of COP9 signalosome. Mol. Biol. Cell 13:646-655. https://doi.org/10.1091/mbc.01-08-0427
- Wee, S., Hetfeld, B., Dubiel, W. and Wolf, D. A. 2002. Conservation of the COP9 signalosome in budding yeast. BMC Genetics. 3:15. https://doi.org/10.1186/1471-2156-3-15
- Wei, N. and Deng, X. W. (2003). The COP9 signalosome. Annu Rev. Cell Dev. Biol. 19:261-286.
- Wei, N., Chamovitz, D. A. and Deng, X. W. 1994. Arabidopsis COP9 is a component of a novel signaling complex mediating light control of development. Cell 78:117-124. https://doi.org/10.1016/0092-8674(94)90578-9
- Wei, N., Serino, G. and Deng, X. W. 2008. The COP9 signalosome: more than a protease. Trends Biochem. Sci. 33:592-600. https://doi.org/10.1016/j.tibs.2008.09.004
- Wei, Z., Zhang, P., Zhou, Z., Cheng, Z., Wan, M. and Gong, W. 2004. Crystal structure of human eIF3k, the first structure of eIF3 subunits. J. Biol. Chem. 279:34983-34990. https://doi.org/10.1074/jbc.M405158200
- Welcker, M. and Clurman, B. E. 2008. FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat. Rev. Cancer 8:83-93. https://doi.org/10.1038/nrc2290
- Yoshida, A., Yoneda-Kato, N., Panattoni, M., Pardi, R. and Kato, J. Y. 2010. CSN5/Jab1 controls multiple events in the mammaliancell cycle. FEBS Lett. 584:4545-4552. https://doi.org/10.1016/j.febslet.2010.10.039
- Zaidi, I. W., Rabut, G., Poveda, A., Scheel, H., Malmstrom, J., Ulrich, H., Hofmann, K., Pasero, P., Peter, M. and Luke, B. 2008. Rtt101 and Mms1 in budding yeast form a CUL4 (DDB1)-like ubiquitin ligase that promotes replication through damaged DNA. EMBO Rep. 9:1034-1040. https://doi.org/10.1038/embor.2008.155
- Zheng, J., Yang, X., Harrell, J. M., Ryzhikov, S., Shim, E. H., Lykke-Andersen, K., Wei, N., Sun, H., Kobayashi, R. and Zhang, H. 2002. CAND1 binds to unneddylated CUL1 and regulates the formation of SCF ubiquitin E3 ligase complex. Mol. Cell 10:1519-1526. https://doi.org/10.1016/S1097-2765(02)00784-0
- Zhou, C., Seibert, V., Geyer, R., Rhee, E., Lyapina, S., Cope, G., Deshaies, R. J. and Wolf, D. A. 2001. The fission yeast COP9 signalosome is involved in cullin modofication by ub-related Ned8p. BMC Biochem. 2: 7. https://doi.org/10.1186/1471-2091-2-7
- Zhou, C., Arslan, F., Wee, S., Krishnan, S., Ivanov, A. R., Oliva, A., Leatherwood, J. and Wolf, D. A. 2005. PCI proteins eIF3e and eIF3m define distinct translation initiation factor 3 complexes. BMC Biol. 3:14. https://doi.org/10.1186/1741-7007-3-14
- Zhou, Z., Wang, Y., Cai, G. and He, Q. 2012. Neurospora COP9 signalosome integrity plays major roles for hyphal growth, conidial development, and circadian function. PLoS Genet. 8: e1002712. https://doi.org/10.1371/journal.pgen.1002712