DOI QR코드

DOI QR Code

99Tc의 토양-쌀알 전이 감소를 위한 소석회와 유기질 비료의 토양첨가

Soil Applications of Slaked Lime and Organic Fertilizer for Reducing 99Tc Transfer from Soil to Rice Seeds

  • 투고 : 2012.09.14
  • 심사 : 2012.12.28
  • 발행 : 2013.03.30

초록

논의 $^{99}Tc$ 오염 시 소석회와 유기질 비료의 토양 첨가가 쌀알 내 $^{99}Tc$ 농도 저감 대책으로서 유용한지 알아보기 위하여 온실 내에서 두 가지 논토양에 대해 포트실험을 수행하였다. 모내기 15 일 전에 약 20 cm 깊이에 해당하는 상부 토양을 상기 농용 물질과 $^{99}Tc$로 처리하였다. 처리 효과는 토양 중 농도에 대한 작물체 내 농도의 비로 정의되는 전이계수(TF)로 비교하였다. 대조 작물체의 경우 두 토양에서 현미 TF 값은 $4.1{\times}10^{-4}$$4.3{\times}10^{-4}$였다. 각종 유형의 첨가 중에서 한 토양에 대해 60%정도의 TF 값 감소를 나타낸 소석회 저수준 첨가(약 0.6 kg $m^{-2}$)만이 대책으로서 이용 가능성이 있을 것으로 판단되었다. 다른 한 토양에서는 동 첨가의 효과가 거의 없었으므로 다수의 토양에 대한 평균적인 효과를 알아내는 것이 중요하다. 두 가지 다른 수준의 유기질 비료의 첨가는 모두 TF 값을 증가시켰다. 위보다 더 낮은 수준의 소석회 첨가에 대해 실험을 수행할 필요가 있을 것으로 사료되었다.

To see if slaked lime and organic fertilizer applications to soil are useful as countermeasures for reducing $^{99}Tc$ concentrations in rice seeds after $^{99}Tc$ contamination of paddy fields, pot experiments were performed for two different paddy soils in a greenhouse. The upper soils for a depth of about 20 cm were treated with the agricultural materials and $^{99}Tc$ 15 d before transplanting. The effects were compared using the transfer factor (TF) defined as the ratio of the plant concentration to the soil concentration. In the case of control plants, TF values for brown rice in the two soils were $4.1{\times}10^{-4}$ and $4.3{\times}10^{-4}$. Of various types of the application, only the application of slaked lime at a lower dose (about 0.6 kg $m^{-2}$), which led to a 60% reduction in the TF value for one soil, seemed to be worth using as a countermeasure. Little effect of the same application was found in the other soil so it is important to determine the effect averaged for a number of soils. Organic fertilizer applications at both of two different doses increased the TF value. It is considered necessary to perform experiments for slake lime applications at doses lower than the above.

키워드

참고문헌

  1. S.H. Sung, Y.Y. Jeong and K.H. Kim, "Radwaste characteristics and disposal facility waste acceptance criteria", J. Kor. Radioactive Waste Society, 6(4), pp. 347-356 (2008).
  2. C.W. Lee, K.H. Chung, Y.H. Cho, M.J. Kang, W. Lee, H.R. Kim and G.S. Choi, "Analysis of $^{99}Tc$ and its activity level in the Korean soil", J. Kor. Radioactive Waste Society, 7(1), pp. 25-31 (2009).
  3. S. Kumar, N. Rawat, A.S. Kar, B.S. Tomar and V.K. Manchanda, "Effect of humic acid on sorption of technetium by alumina", J. Hazardous Materials, 192, pp. 1040-1045 (2011). https://doi.org/10.1016/j.jhazmat.2011.06.007
  4. Q.H. Hu, J.Q. Weng and J.S. Wang, "Sources of anthropogenic radionuclides in the environment: a review", J. Environ. Radioactivity, 101, pp. 426-437 (2010). https://doi.org/10.1016/j.jenvrad.2008.08.004
  5. S. Uchida, K. Tagami, E. Wirth, W. Ruehm, "Concentration levels of technetium-99 in forest soils collected within the 30-km zone around the Chernobyl reactor", Environ. Pollution 105, pp. 75-77 (1999). https://doi.org/10.1016/S0269-7491(98)00210-3
  6. K. Tagami and S. Uchida, "Concentration of global fallout 99Tc in rice paddy soils collected in Japan", Environ. Pollution, 95, pp. 151-154 (1997). https://doi.org/10.1016/S0269-7491(96)00124-8
  7. J.E. Till and H.R. Meyer (Eds.), Radiological Assessment. U.S. Nuclear Regulatory Commission. NUREG/CR-3332, ORNL-5968 (1983).
  8. Ministry for Food, Agriculture, Forestry and Fisheries, Korea, Food, Agriculture, Forestry and Fisheries Statistical Yearbook, 11-1541000-000078-10 (2011)
  9. E.W. Lee, Rice Culture, Hyangmoon Press, Seoul (1996).
  10. H. Marschner, Mineral Nutrition in Higher Plants, Academic Press, London (1986).
  11. R. Bennett and N. Willey, "Soil availability, plant uptake and soil to plant transfer of $^{99}Tc$ - A review", J. Environ. Radioactivity, 65, pp. 215-231 (2003). https://doi.org/10.1016/S0265-931X(02)00098-X
  12. K. Tagami and S. Uchida, "Chemical transformation of technetium in soil during the change of soil water conditions", Chemosphere, 38, pp. 963-971 (1999). https://doi.org/10.1016/S0045-6535(98)00361-0
  13. N. Ishii, H. Koiso, H. Takeda and S. Uchida, "Environmental conditions for the formation of insoluble Tc in water ponds located above paddy fields", J. Environ. Radioactivity, 99, pp. 965-972 (2008). https://doi.org/10.1016/j.jenvrad.2007.11.008
  14. J.D.C. Begg, I.T. Burke and K. Morris, "The behaviour of technetium during microbial reduction in amended soils from Dounreay, UK", Science of the Total Environment, 373, pp. 297-304 (2007). https://doi.org/10.1016/j.scitotenv.2006.10.034
  15. S.J. Cho, C.S. Park and D.I. Uhm, Soil Science, Hyangmoon Press, Seoul (1997).
  16. F. Wigley, P.E. Warwick, I.W. Croudace, J. Caborn and A.L. Sanchez, "Optimised method of the routine determination of technetium-99 in environmental samples by liquid scintillation counting", Analytica Chimica Acta, 380, pp. 73-82 (1999). https://doi.org/10.1016/S0003-2670(98)00676-X
  17. Y.H. Choi, K.M. Lim, I. Jun, D.W. Park, D.K. Keum and M.H. Han, "Soil-to-rice seeds transfer factors of radioiodine and technetium for paddy fields around the radioactive-waste disposal site in Gyeongju", J. Kor. Radioactive Waste Society, 8(4), pp. 329-337 (2010).
  18. W. Schimmack, U. Gerstmann, W. Schultz, M. Sommer, V. Tschöpp and G. Zimmermann, "Intra-cultivar variability of the soil-to-grain transfer of fallout $^{137}Cs$ and 90Sr for winter wheat", J. Environ. Radioactivity, 94, pp. 16-30 (2007). https://doi.org/10.1016/j.jenvrad.2006.12.010
  19. J. Wu, L.J. West and D.I. Stewart, "Effect of humic substances on Cu(II) solubility in kaolin-sand soil", J. Hazardous Materials, B94, pp. 223-238 (2002).
  20. K. Geraedts and A. Maes, "The lanthanum precipitation method. Part 1: A new method for technetium(IV) speciation in humic rich natural groundwater", Chemosphere, 73, pp. 484-490 (2008). https://doi.org/10.1016/j.chemosphere.2008.06.041