DOI QR코드

DOI QR Code

Demonstration of Zr Recovery from 50 g Scale Zircaloy-4 Cladding Hulls using a Chlorination Method

50 g 규모의 Zircaloy-4 피복관으로부터 염소화 방법을 이용한 Zr 회수 거동 연구

  • Received : 2012.12.04
  • Accepted : 2013.01.30
  • Published : 2013.03.30

Abstract

The recovery of Zr from Zircaloy-4 (Zry-4) cladding hulls using a chlorination method was demonstrated for complete conversion of Zr into $ZrCl_4$. A chlorination reaction was performed by reacting Zry-4 hulls for 8 h under a 70 cc/min $Cl_2$ + 70 cc/min Ar flow at $380^{\circ}C$. The initial weight of the reactant (51.7 g) decreased to 0.49 g after 8 h of operation, which is only 0.95wt% of the initial weight. The weight of the total reaction products was 121.7 g with a high Zr purity of 99.80wt%. Fe and Sn were identified as major (0.18wt%) and minor (0.02wt%) impurities of the reaction products, respectively. It was also shown that Zr exhibited a high recovery ratio of 96.95wt% with a relatively small experimental loss of 2.34wt%. Observation of the reaction residues revealed that the chlorination reaction was dominant along the longitudinal direction, and surface oxide layers remained as reaction residues. The high purity and recovery ratio of Zr proposed the feasibility of the chlorination technique as an effective hull waste treatment method.

본 논문에서는 염소화 반응을 통해 Zircaloy-4 (Zry-4) 피복관으로부터 Zr의 회수 연구를 수행하였다. 피복관의 Zr을 전부 $ZrCl_4$로 전환시키기 위해, Zry-4 피복관을 380도에서 70 cc/min $Cl_2$ + 70 cc/min Ar 기체를 이용하여 8시간 동안 반응시켰다. 피복관의 초기 무게는 51.7 g이었으나, 8 시간 반응 후에는 0.49 g만이 잔류물로 남아있는 것을 확인하였는데 이는 초기 무게의 0.95wt%에 해당하는 값이다. 반응 생성물의 무게는 121.7 g 이었으며, Zr의 순도는 99.80wt%였다. 주요 불순물로는 Fe (0.18wt%)와 Sn (0.02wt%)를 확인할 수 있었다. 실험 결과를 통해 확인한 Zr의 회수율은 96.95wt%였으며, 실험상 손실은 2.34wt%로 확인되었다. 반응 잔류물의 관찰을 통해 염소화 반응이 길이 방향으로 주로 일어나며, 표면의 산화층이 반응 잔류물로 남는다는 것을 확인할 수 있었다. 본 연구를 통해 확인된 Zr의 높은 순도와 회수율은 염소화 공정이 폐 피복관 처리 방법으로 매우 유망한 기술임을 의미한다고 볼 수 있다.

Keywords

References

  1. D.K. Cho, D.H. Kook, H.J. Choi and J.W. Choi, "Source Term Characterization for Structural Components in $17{\times}17$ KOFA Spent Fuel Assembly", J. Korean Radioactive Waste Soc., 8(4), pp. 347- 353 (2010).
  2. T.S. Rudisill, "Decontamination of Zircaloy cladding hulls from spent nuclear fuel", J. Nucl. Mater., 385(1), pp. 193-195 (2009). https://doi.org/10.1016/j.jnucmat.2008.10.016
  3. K.C. Song, H. Lee, J.M. Hur, J.G. Kim, D.H. Ahn and Y.Z. Cho, "Status of pyroprocessing technology development in Korea", Nucl. Eng. Technol., 42(2), pp.131-144 (2010). https://doi.org/10.5516/NET.2010.42.2.131
  4. H. Lee, G.I. Park, K.H. Kang, J.M. Hur, J.G. Kim, D.H. Ahn, Y.Z. Cho and E. H. Kim, "Pyroprocessing technology development at KAERI", Nucl. Eng. Technol., 43(4), pp. 317-328 (2011). https://doi.org/10.5516/NET.2011.43.4.317
  5. B.H. Park and W.I. Ko, "Nuclear Fuel Cycle Analysis Technology to Develop Advanced Nuclear Fuel Cycle", J. Korean Radioactive Waste Soc., 9(4), pp.219-230 (2011). https://doi.org/10.7733/jkrws.2011.9.4.219
  6. J.H. Yoo, J.K. Kim, H.S. Lee, I.S. Seo and E. Kim, "Patent Analysis for Pyroprocessing of Spent Nuclear Fuel", J. Korean Radioactive Waste Soc., 9(4), pp. 247-258 (2011). https://doi.org/10.7733/jkrws.2011.9.4.247
  7. M.K. Jeon, C.J. Park, C.H. Lee, K.H. Kang and G.I. Park, "Simulation of radioactivation and chlorination reaction behavior for Zircaloy-4 and Zirlo cladding hull wastes", J. Radioanal. Nucl. Chem., 292(3), pp. 1221-1228 (2012). https://doi.org/10.1007/s10967-011-1581-1
  8. C.H. Lee, K.H. Kang, M.K. Jeon, C.M. Heo and Y.L. Lee, "Electrorefining of Zirconium from Zircaloy-4 Cladding Hulls in LiCl-KCl Molten Salts", J. Electrochem. Soc., 159(8), pp. D463-D468 (2012). https://doi.org/10.1149/2.012208jes
  9. Y. Yasuike, S. Iwasa, K. Suzuki, H. Kobayashi, O. Amano and N. Sato, "Recycle of Zr metal from hull wastes by treatment of chlorination and metallization", Proc. ICEM'03: The 9th International Conference on Radioactive Waste Management and Environmental Remediation, ICEM03-4626, September 21-25, 2003, Oxford, England.
  10. M.K. Jeon, K.H. Kang, G.I. Park and Y.S. Lee, "Chlorination reaction behavior of Zircaloy-4 hulls: experimental and theoretical approaches", J. Radioanal. Nucl. Chem., 292(2), pp. 513-517 (2012). https://doi.org/10.1007/s10967-011-1435-x
  11. M.K. Jeon, K.H. Kang, C.M. Heo, J.H. Yang, C.H. Lee and G.I. Park, "Effect of oxidation conditions on chlorination reaction of Zircaloy-4 hulls", J. Nucl. Mater., 424(1-3), pp. 153-157 (2012). https://doi.org/10.1016/j.jnucmat.2012.03.010
  12. E.D. Collins, G.D. DelCul, B.B. Spencer, R.R. Brunson, J.A. Johnson, D.S. Terekhov and N.V. Emmanuel, "Process Development Studies for Zirconium Recovery/Recycle from Used Nuclear Fuel Cladding", Proc. Chem., 7, pp. 72-76 (2012) https://doi.org/10.1016/j.proche.2012.10.013
  13. M.K. Jeon, J.W. Lee, K.H. Kang, G.I. Park, C.H. Lee, J.H. Yang and C. M. Heo, "Simulation of chlorination reaction behavior of hull wastes by using the HSC code", J. Radioanal. Nucl. Chem., 289(2), pp. 417-422 (2011). https://doi.org/10.1007/s10967-011-1081-3
  14. M.K. Jeon, K.H. Kang, G.I. Park and C.H. Lee, "Effect of chlorinating reagents on Zr recovery from Zircaloy-4 hull wastes: reaction behavior simulation by using the HSC code", J. Radioanal. Nucl. Chem., 292(1), pp. 285-291 (2012). https://doi.org/10.1007/s10967-011-1407-1
  15. L.N. Zelenina, Z.I. Semenova, V.A. Titov and T.P. Chusova, "Tensimetric investigation of the $CrCl_{3}-Cl_{2}$ system in the temperature range of 600-1200 K", Russ. Chem. Bull. Int. Ed., 53(8), pp.1621-1624 (2004). https://doi.org/10.1007/s11172-005-0006-0
  16. A. Roine, Outokumpu HSC chemistry for windows, Pori, Finland (2002).
  17. D.S. Rustad and N.W. Gregory, "Vapor pressure of Iron (III) chloride", J. Chem. Eng. Data, 28(2), pp.151-155 (1983). https://doi.org/10.1021/je00032a004

Cited by

  1. A TGA study on the chlorination reaction kinetics of Zircaloy-4 cladding hulls vol.459, 2015, https://doi.org/10.1016/j.jnucmat.2015.01.034
  2. Chlorination reaction kinetics of CsI under cladding hull waste treatment condition: a TGA study vol.307, pp.1, 2016, https://doi.org/10.1007/s10967-015-4096-3
  3. Kinetic separation of cobalt from zirconium by cation exchange process vol.52, pp.4, 2017, https://doi.org/10.1080/01496395.2016.1263212
  4. Chlorination Reaction Behavior of Zircaloy-4 Hulls: A Preliminary Study on the Effect of the Oxidation Process on the Reaction Rate vol.11, pp.1, 2013, https://doi.org/10.7733/jkrws.2013.11.1.69
  5. The Effects of Cross-Section Openings on the Chlorination Reaction Rate of ZIRLO Cladding Hulls vol.13, pp.3, 2015, https://doi.org/10.7733/jnfcwt.2015.13.3.211
  6. Bis(tetraphenylarsonium) hexachloridozirconate(IV) acetonitrile tetrasolvate vol.3, pp.4, 2013, https://doi.org/10.1107/s241431461800528x
  7. Anion exchange separation of antimony and the integrated ion exchange process for decontamination of used zircaloy pressure tubes from Indian pressurized heavy water reactors vol.55, pp.13, 2013, https://doi.org/10.1080/01496395.2019.1626423
  8. Recovery of Zirconium from Zircaloys Using a Hydrochlorination Process vol.207, pp.2, 2013, https://doi.org/10.1080/00295450.2020.1757961