DOI QR코드

DOI QR Code

방사성폐기물 처분안전성 평가 자료 제공을 위한 핵종 수착 데이터베이스(KAERI-SDB) 개발

Development of Sorption Database (KAERI-SDB) for the Safety Assessment of Radioactive Waste Disposal

  • 투고 : 2012.10.16
  • 심사 : 2013.01.31
  • 발행 : 2013.03.30

초록

방사성폐기물 처분 안전성 평가를 위하여 방사성 핵종의 수착특성에 대한 정보제공이 필요하다. 그러나 우리나라는 최근까지 핵종 수착 데이터베이스에 대한 접근성이 취약하여 이용에 제한이 있었다. 사용자들에게 효율적인 방법으로 핵종 수착관련 정보를 제공하기 위해 웹을 기반으로 하는 핵종 수착 데이터베이스(KAERI-SDB)를 개발하였다. KAERI-SDB를 개발하기 위하여 1998년에 개발된 수착 데이터베이스 프로그램인 SDB-21C을 분석하고 사용자 요구사항을 반영하였으며, 사용자가 웹 브라우저를 통하여 실시간으로 수정 및 보완된 핵종 수착 자료에 실시간으로 접근이 가능하도록 구성하였다. KAERI-SDB는 로그인/회원가입, 자료 검색 및 저장 그리고 검색결과에 대한 차트 구현 등의 기능들이 포함되도록 고안되었다. KAERI-SDB는 수착 자료를 이용하고자 하는 이용자들의 접근성을 향상함으로써 방사성폐기물 처분 안전성 평가에 폭넓게 활용될 것으로 예상된다. 나아가, 핵종 수착관련 자료들을 일반인에게 공개함으로써 방사성폐기물 처분 프로그램에 대한 신뢰도와 대중 수용성을 증진시킬 수 있을 것으로 기대된다.

Radionuclide sorption data is necessary for the safety assessment of radioactive waste disposal. However the use of sorption database is often limited due to the accessability. A web-based sorption database program named KAERI-SDB has been developed to provide information on the sorption of radionuclides onto geological media as a function of geochemical conditions. The development of KAERI-SDB was achieved by improving the performance of pre-existing sorption database program (SDB-21C) developed in 1998 and considering user's requirements. KAERI-SDB is designed that users can access it by using a web browser. Main functions of KAERI-SDB include (1) log-in/member join, (2) search and store of sorption data, and (3) chart expression of search results. It is expected that KAERI-SDB could be widely utilized in the safety assessment of radioactive waste disposal by enhancing the accessibility to users who wants to use sorption data. Moreover, KAERI-SDB opened to public would also improve the reliability and public acceptance on the radioactive waste disposal programs.

키워드

참고문헌

  1. N.A. Chapman, I.G. McKinnley and M.D. Hill, The Geological Disposal of Nuclear Waste, John Wiley & Sons, Inc., Chichester (1987).
  2. I. Casas, D. Casabona, L. Duro and J. Pablo, "The Influence of Hematite on the Sorption of Uranium(VI) onto Granite Filling Fractures", Chem. Geol., 113, pp. 319-326 (1994). https://doi.org/10.1016/0009-2541(94)90073-6
  3. J.P. McKinley, J.M. Zachara, S.C. Smith and G.D. Turner, "The Influence of Uranyl Hydrolysis and Multiple Site-binding Reactions on Adsorption of U(VI) to Montmorillonite", Clay. Clay Miner., 43, pp. 586-598 (1995). https://doi.org/10.1346/CCMN.1995.0430508
  4. M.H. Baik and W.J. Cho, "An Experimental Study on the Sorption of Uranium(VI) onto a Bentonite Colloid", J. of the Korean Radioactive Waste Society, 4(3), pp. 235-243 (2006).
  5. M.H. Baik, J.K. Lee, S.Y. Lee and S.S. Kim, "Sorption of Eu(III) and Th(IV) on Bentonite Colloids Considering Their Precipitation and Colloid Formation", J. of the Korean Radioactive Waste Society, 6(2), pp. 129-139 (2008).
  6. I.G. Mckinley and A. Scholtis, "Compilation and Comparison of Radionuclide Sorption Database used in Recent Performance Assessments", Proc. of an NEA Workshop on Radionuclide Sorption from the Safety Evaluation Perspective, Interlaken, Switzerland (1991).
  7. D.B. Kent, V.S. Tripathi, N.B. Ball and J.O. Leckie, Surface-Complexation Modeling of Radionuclide Adsorption in Sub-Surface Environments, Stanford Civil Engineering Tech. Rept. #294, Stanford, CA / NUREG Rept. CR-4897, SAND 86-7175 (1988).
  8. B. Ruegger and K. Ticknor, "The NEA Sorption Data Base (SDB)" In: NEA Workshop on Radionuclide Sorption from the Safety Evaluation Perspective, Interlaken, October 16-18 (1991).
  9. V. Brendler, A. Vahle, T. Arnold, G. Bernhard and T. Fanghänel, "RES3T-Rossendorf Expert System for Surface and Sorption Thermodynamics", J. Contamin. Hydr. 61, pp. 281-291 (2003). https://doi.org/10.1016/S0169-7722(02)00129-8
  10. http://migrationdb.jaea.go.jp/english.html.
  11. S. Goldberg, "Use of Surface Complexation Models in Soil Chemical Systems", Adv. Agron., 47, pp. 233-329 (1992). https://doi.org/10.1016/S0065-2113(08)60492-7
  12. W. Stumm, H. Hohl and F. Dalang, "Interaction of Metal Ions with Hydrous Oxide Surfaces", Croat. Chem. Acta, 48, pp. 491-504 (1976).
  13. W. Stumm, C.P. Huang and S.R. Jenkins, "Specific Chemical Interaction affecting the Stability of Dispersed Systems", Croat. Chem. Acta, 42, pp. 223-245 (1970).
  14. H. Hohl and W. Stumm, "Interaction of Pb2+ with Hydrous ${\gamma}-Al_{2}O_{3}$", J. Coll. Interf. Sci., 55, pp. 281-288 (1976). https://doi.org/10.1016/0021-9797(76)90035-7
  15. D.E. Yates, S. Levine and T.W. Healy, "Site-binding Model of the Electrical Double Layer at the Oxide/ Water Interface", J. Chem. Soc. Faraday Transactions, 70, pp. 1807-1818 (1974). https://doi.org/10.1039/f19747001807
  16. J.C. Westall and H. Hohl, "A comparison of electrostatic models for the oxide/solution interface", Adv. Colloid Interfac., 12, pp. 265-294 (1980). https://doi.org/10.1016/0001-8686(80)80012-1
  17. G.H. Bolt and W.H. van Riemsdijk, Soil Chemistry: B. Physico-Chemical Models, Elsevier, Amsterdam. Chapter 13 (1982).
  18. T. Hiemstra, W.H. van Riemsdijk and G.H. Bolt, "Multisite Proton Adsorption Modeling at the Solid/ Solution Interface of (Hydr)oxides: A New Approach: I. Model Description and Evaluation of Intrinsic Reaction Constants", J. Coll. Interf. Sci., 133, pp. 91-104 (1989). https://doi.org/10.1016/0021-9797(89)90284-1
  19. T. Hiemstra and W.H. van Riemsdijk, "A Surface Structural Approach to Ion Adsorption: The Charge Distribution (CD) Model", J. Colloid Interf. Sci., 179, pp. 488-508 (1996). https://doi.org/10.1006/jcis.1996.0242
  20. Y. Saito, M. Ochs, T. Suyama, A. Kitamura, M. Shibata and H. Sasamoto, An Update of the Sorption Database: Correction and Addition of Published Literature Data, JAEA-Data/Code 2007-014, JAEA (2007).
  21. J. Jung, J.K. Lee and P.S. Hahn, Development and Application of a Sorption Data Base for the Performance Assessment of a Radwaste Repository. Waste Manage., 21, pp. 363-369 (2001). https://doi.org/10.1016/S0956-053X(00)00083-0
  22. J.W. Kim, J.H. Kim, H.K. Kim, R.H. Park, S.Y. Park, N.Y. Lee, S.H. Lee and J.H. Lee, Introduction to Statistics, Jungik Publishing Co., Seoul (2001).
  23. T.D. Waite, J.A. Davis, T.E. Payne, G.A. Waychunas and N. Xu, "Uranium(VI) Adsorption to Ferrihydrite: Application of a Surface Complexation Model", Geochim. Cosmochim. Acta, 58, pp. 5465-5478 (1994). https://doi.org/10.1016/0016-7037(94)90243-7
  24. M.H. Baik, S.P. Hyun, W.J. Cho and P.S. Hahn, "Contribution of Minerals to the Sorption of U(VI) on Granite", Radiochim. Acta, 92, pp. 663-669 (2004). https://doi.org/10.1524/ract.92.9.663.54980
  25. R. Brandt, T. Schäfer, F. Claret and D. Bosback, "Heterogenous Formation of Ferric Oxide Nanoparticles on Chlorite Surfaces studied by X-ray Absorption Spectromicroscopy (STXM)", Chem. Geol., 329, pp. 42-52 (2012). https://doi.org/10.1016/j.chemgeo.2011.08.016
  26. T. Murakami and H. Isobe, T. Sato, T. Ohnuki, "Weathering of Chlorite in a Quartz-Chlorite Schist: I. Mineralogical and Chemical Changes", Clay. Clay. Miner., 44, pp. 244-256 (1996). https://doi.org/10.1346/CCMN.1996.0440210
  27. S. Bachmaf and B.J. Merkel, "Sorption of Uranium(VI) at the Clay Mineral-Water Interface", Environ. Earth Sci., 63, pp. 925-934 (2011) https://doi.org/10.1007/s12665-010-0761-6
  28. J.B. Dixon and S.B. Weed, Mineral in Soil Environment. 2nd Ed., Soil Science Society of America, Madison, Wisconsin (1989).
  29. K. Andersson and B. Allard, Sorption of Radionuclides on Geologic Media -A Literature Survey.I. Fission Products. SKB TR-83-07, Svensk Karnbranslehantering AB., Stockholm (1983).
  30. R. Guillaumont, T. Fanghanel, J. Fuger, I. Grenthe, V. Neck, D.A. Palmer and M.H. Rand, Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium, Chemical Thermodynamics Series 5, Elsevier (2003).
  31. J.P. Gustafsson, Visual MINTEQ, Version 3.0, (http://www.lwr.kth.se/English/OurSoftware/vminteq), Stockholm (2010).

피인용 문헌

  1. 용존 6가 우라늄 및 실리카 표면 흡착 6가 우라늄 화학종 분포 연구 vol.18, pp.1, 2013, https://doi.org/10.7733/jnfcwt.2020.18.1.63