DOI QR코드

DOI QR Code

Comparison of Virulence Factors of Enterococci from Intestinal Drugs, Infant Feces and Clinical Isolates

정장제, 신생아 분변 및 병원에서 분리한 장구균의 병독성인자 비교

  • 이정현 (경상대학교 수의학과) ;
  • 황성우 (대우제약(주) 중앙연구소) ;
  • 강경란 (대우제약(주) 중앙연구소) ;
  • 김동희 (대우제약(주) 중앙연구소) ;
  • 김천규 (인제대학교 제약공학과)
  • Received : 2013.02.09
  • Accepted : 2013.02.25
  • Published : 2013.02.27

Abstract

Three isolates, E. faecium P1, P2 and P3, from intestinal drugs of three phamaceutical companies, four clinical vancomycin resistant isolates, E. faecium V1, V2, V3 and E. faecalis V4, and three isolates, E. faecalis DW01, DW07 and DW14, from infant feces were tested for the presence of virulence genes, ace, agg, esp, efaA, gelE, sprE, vanA and vanB as well as fsrABC, regulatory genes of gelE and sprE, cylMBA, cytolysin activation genes and cpd, cob and ccf, pheromone genes by PCR and for their phenotype activities such as protease, biofilm formation, cell clumping and hemolysis. The genes encoding cell surface adherence proteins, ace, agg, esp and efaA, were predominantly amplified from the vancomycin resistant strain V4 and the fecal isolates DW01, DW07 and DW14. Both protease and biofilm formation activity were detected only from E. faecalis V4 from which the PCR products of gelE and spreE as well as fsrABC were amplified. The pheromone genes were amplified from the V4, DW01, DW07 and DW14 strains and these strains showed clumping activity. Biofilm formation was observed from the strains DW01, DW07 and DW14, all of which produced PCR products of pheromone, and V4 as well. Whole cytolysin regulator genes were amplified from DW01, DW07 and DW14 and ${\beta}$-hemolysis activity was detected from these strains. Any virulence genes or activities except the pheomone gene ccf were not detected from the pharmaceutical isolates, E. faecium P1, P2 and P3.

Keywords

References

  1. Reid, G. J., Jass, M. T. Sebulsky, and J. K. McCormick (2003) Potential uses of probiotics in clinical practice. Clin. Microbiol. Rev. 16(4): 658-672.
  2. Jett, B. D., M. M. Huycke, and M. S. Gilmore (1994) Virulence of enterococci. Clin. Microbiol. Rev. 7(4): 462-478.
  3. Report of a Joint FAO/WHO Working Group (2002) Guidelines for the evaluation of probiotics in food. 1-11.
  4. Virulence factors of pathogenic bacteria. the State Key Laboratory for Moleclular Virology and Genetic Engineering, Institue of Pathogen Biology, CAMS&PUMC. http://www.mgc.ac.cn/cgi-bin/VFs/genus.cgi?Genus=Enterococcus
  5. Mundy, L. M. D. F. Sahm, and M. Gilmore (2000) Relationships between enterococcal virulence and antimicrobial resistance. Clin. Microbiol. Rev. 13: 513-522. https://doi.org/10.1128/CMR.13.4.513-522.2000
  6. Clewell, D. B. F. Y. An, S. E. Flannagan, M. Antiporta, and G. M. Dunny (2000) Enterococcal sex pheromone precursors are part of signal sequences for surface lipoproteins. Mol. Microbiol. 35: 246-247. https://doi.org/10.1046/j.1365-2958.2000.01687.x
  7. Low, Y. L. N. S. Jakubovics, J. C. Flatman, H. F. Jenkinson, and A. W. Smith (2003) Manganese-dependent regulation of the endocarditis- associated virulence factor EfaA of Enterococcus faecalis. J. Med. Microbiol. 52: 113-119. https://doi.org/10.1099/jmm.0.05039-0
  8. Hancock, L. E. and M. Perego (2004) The Enterococcus faecalis fsr two-component system controls biofilm development through production of gelatinase. J. Bacteriol. 186: 5629-5639. https://doi.org/10.1128/JB.186.17.5629-5639.2004
  9. Huycke, M. M. C. A. Spiegel, and M. S. Gilmore (1991) Bacteremia caused by hemolytic, high-level gentamicin-resistant Enterococcus faecalis. Antimicrob. Agents. Chemother. 35: 1626-1634. https://doi.org/10.1128/AAC.35.8.1626
  10. Cappuccino, J. G. and N. Sherman (2008) Microbiology a laboratory manual. 8th ed. Perason Benjamin Cummings. USA.
  11. Lewington, J. S., D. Greenaway, and B. J. Spillane. 1987. Rapid small scale preparation of bacterial genomic DNA suitable for cloning and hybridization analysis. Lett. Appl. Microbiol. 5: 51-53. https://doi.org/10.1111/j.1472-765X.1987.tb01612.x
  12. Qin, X., K. V. Singh, G. M. Weinstock, and B. E. Murray (2000) Effect of Enterococcus faecalis fsr genes on production of gelatinse and a serine protease and virulence. Infect. Immun. 68: 2579-2586. https://doi.org/10.1128/IAI.68.5.2579-2586.2000
  13. Cetin, E. T. (1963) Hemolysin-inhibiting substance in Staphylococcus aureus strains. J. Bacteriol. 86: 407-413.
  14. Kristich, C. J., Y.-H. Li, D. G. Cvitkovitch, and G. M. Dunny (2004) Esp-Independent Biofilm Formation by Enterococcus faecalis. J. Bacteriol. 186: 154-163. https://doi.org/10.1128/JB.186.1.154-163.2004
  15. Jayanthi, S., M. Ananthasubramanian, and B. Appalaraju (2008) Assessment of pheromone response in biofilm forming clinical isolates of high level gentamicin resistant Enterococcus faecalis. Indian J. Med. Microbiol. 26: 248-251. https://doi.org/10.4103/0255-0857.42037
  16. Rafii, F., W. Franklin, and C. E. Cerniglia (1990) Azoreductase activity of anaerobic bacteria isolated from human intestinal microflora. Appl. Environ. Microbiol. 56: 2146-2151.
  17. Dunny, G. M. B. L. Brown, and D. B. Clewell (1978) Induced cell aggregation and mating in Streptococcus faecalis: evidence for a bacterial sex pheromone. Proc. Natl. Acad. Sci. USA. 75: 3479-3483. https://doi.org/10.1073/pnas.75.7.3479
  18. Kavindra V. Singh, Teresa M. Coque et al. In vivo testing of an Enterococcus faecalis efaA mutnat and use of efaA homologs for species identification. Immunology and Medical Microbiology. 1998, 21: 323-331. https://doi.org/10.1111/j.1574-695X.1998.tb01180.x
  19. Van Wamel, W. J. A. P. Hendrickx, M. J. Bonten, J. Top, G. Posthuma, and R. J. Willems (2007) Growth condition-dependent Esp expression by Enterococcus faecium affects initial adherence and biofilm formation. Infect. Immun. 75: 924-931. https://doi.org/10.1128/IAI.00941-06
  20. Baldassarri, L. R. Cecchini, L. Bertuccini, M. G. Ammendolia, F. Iosi, C. R. Arciola, L. Montanaro, R. Di Rosa, G. Gherardi, G. Dicuonzo, G. Orefici, and R. Creti (2001) Enterococcus spp. produces slime and survives in rat peritoneal macrophages. Med. Microbiol. Immunol. 190: 113-120.