DOI QR코드

DOI QR Code

공항 콘크리트 포장 설계를 위한 환경하중 산정방법 개발

Development of Environmental Load Calculation Method for Airport Concrete Pavement Design

  • 박주영 (인하대학교 토목공학과) ;
  • 홍동성 (인하대학교 토목공학과, 한국수자원공사) ;
  • 김연태 (인하대학교 토목공학과) ;
  • 정진훈 (인하대학교 토목공학과)
  • 투고 : 2012.09.05
  • 심사 : 2013.02.15
  • 발행 : 2013.03.30

초록

콘크리트 포장의 환경하중은 온도하중과 수분하중으로 구분할 수 있으며, 이는 콘크리트 슬래브 내의 온도분포와 건조수축 및 크리프를 의미한다. 본 연구에서는 공항 콘크리트 포장의 역학적 설계에 필요한 환경하중을 산정할 수 있는 방법을 개발하였다. 먼저, 대상 지역과 설계 슬래브 두께를 결정한 후, 포장 온도 예측 프로그램을 사용하여 예측된 슬래브 깊이에 따른 콘크리트 온도분포를 등가선형 온도차이로 환산하였다. 기존 건조수축 예측 모형을 개선하여 지역별 상대습도를 고려하여 콘크리트의 건조수축을 예측한 후 부등건조수축 등가선형 온도차이로 환산하였다. 또한, 응력이완을 건조수축에 반영하였다. 결국, 온도에 의한 등가선형 온도차이와 수분에 의한 부등건조수축 등가선형 온도차이를 합하여 최종 환경하중인 총 등가선형 온도차이를 산정하였다. 적용 예를 보이기 위해 지역별 기상조건을 대표할만한 국내 민간공항 8곳 및 군공항 2곳의 환경하중을 본 연구에서 개발된 방법으로 계산하고 비교하였다.

The environmental load of concrete pavement can be categorized by temperature and moisture loads, which mean temperature distribution, and drying shrinkage and creep in the concrete slab. In this study, a method calculating the environmental load essential to mechanistic design of airport concrete pavement was developed. First, target area and design slab thickness were determined. And, the concrete temperature distribution with slab depth was predicted by a pavement temperature prediction program to calculate equivalent linear temperature difference. The concrete drying shrinkage was predicted by improving an existing model to calculate differential shrinkage equivalent linear temperature difference considering regional relative humidity. In addition, the stress relaxation was considered in the drying shrinkage. Eventually, the equivalent linear temperature difference due to temperature and the differential shrinkage equivalent linear temperature difference due to moisture were combined into the total equivalent linear temperature difference as terminal environmental load. The environmental load of eight civilian and two military airports which represent domestic regional weather conditions were calculated and compared by the method developed in this study to show its application.

키워드

참고문헌

  1. ACI Committee 209 (1997). Prediction of Creep, Shrinkage, and Temperature Effects in Concrete Structures ACI 209R-92. ACI Manual of Concrete Practice, American Concrete Institute, Farmington Hills, MI.
  2. An, D. S. and Park, H. M. (2004). "A Study on Pavement Temperature Prediction Models Using Field Inspection Data." Proceedings of the KSRE Conference, Vol. 6, pp. 17-20 (in Korean).
  3. Bazant, Z. P. and Baweja, S. (1995). "Creep and Shrinkage Prediction Model for Analysis and Design of Concrete Structures- Model B3." Materials and Structures, Vol. 28, No. 6, pp. 357-365. https://doi.org/10.1007/BF02473152
  4. Bazant, Z. P. and Panula, L. (1978). "Practical Prediction of Time- Dependent Deformations of Concrete, Part 1, Shrinkage; Part 2, Creep." Materials and Construction, Vol. 2, No. 65, pp. 301-328.
  5. Eisenmann, J. and Leykauf, G. (1990). "Simplified calculation method of slab curling caused by surface shrinkage." Proceedings of the 2nd International Workshop on the Theoretical Design of Concrete Pavements, Madrid, Spain, pp. 185-197.
  6. FAA (2009). "Standards for Airport Pavement Design and Evaluation." AC 150/5320-6E, Office of Airport Safety and Standards, U.S. Department of Transportation.
  7. Gardner, N. J. (2004). "Comparison of Prediction Provisions for Drying Shrinkage and Creep of Normal-Strength Concretes." Canadian Journal of Civil Engineering, Vol. 31, No. 5, pp. 767-775. https://doi.org/10.1139/l04-046
  8. Hossain, A. B. and Weiss, J. (2004). "Assessing Residual Stress Development and Stress Relaxation in Restrained Concrete Ring Specimens", Cement and Concrete Composites. Vol. 26, No. 5, pp. 531-540. https://doi.org/10.1016/S0958-9465(03)00069-6
  9. Janssen, D. J. (1987). "Moisture in Portland Cement Concrete." Transportation Research Record 1121, pp. 40-44.
  10. Jeong, J. H., Lim, J. S., Cheon, S. H., and Kwon, S. A. (2010). "Advanced FAA Design Method for Airport Pavements." Journal of Korean Society of Road Engineers, Vol. 12, No. 3, pp. 39-45 (in Korean).
  11. Jeong, J. H., Lim, J. S., Sun, R. J., and Zollinger, D. G. (2011). "Modeling of Differential Shrinkage of Pavement Slabs." Proceedings of the Institution of Civil Engineers - Transport, Vol. 165, No. 1, pp. 3-14.
  12. KMA (2010). Annual Aeronautical Meteorological Report. Korea Meteorological Administration, (in Korean).
  13. Lim, J. S., Choi, K. H., Lee, C. J., and Jeong, J. H. (2009). "Modeling of Differential Shrinkage Equivalent Temperature Difference for Concrete Pavement Slabs." Journal of Korean Society of Road Engineers, Vol. 11, No. 4, pp. 59-68 (in Korean).
  14. MOCT (2004). Development of Asphalt Pavement Design Guide. Final Report, Korean Pavement Research Program, Ministry of Construction and Transportation, pp. 29-60 (in Korean).
  15. Mohamed, A. R. and Hansen, W. (1997). "Effect of Nonlinear Temperature Gradient on Curling Stress in Concrete Pavement." Transportation Research Record : Journal of the Transportation Research Board 1568, pp. 65-71.
  16. Park, J. W., Jeong, Y. D., Lim, J. S., and Jeong, J. H. (2009). "A Preliminary Study on Reduction of Shrinkage Stress in Concrete Slabs." Journal of Korean Society of Road Engineers, Vol. 11, No. 4, pp. 87-94 (in Korean).
  17. Park, J. Y., Park, J. W., Kim, S. H., Liu, J. H., and Jeong, J. H. (2012). "Comparative Analysis in Sensitivity of Cumulative Fatigue Damage of Mechanistic-Empirical Concrete Pavement Design Programs." Journal of Korean Society of Road Engineers, Vol. 14, No. 3, pp. 15-24 (in Korean). https://doi.org/10.7855/IJHE.2012.14.3.015
  18. Yang, S. C., Ahn, N. S., Choi, D. U., and Kang, S. M. (2004). "Drying Shrinkage of Concretes According to Different Volume-Surface Ratios and Aggregate Types." Journal of Korean Society of Road Engineers, Vol. 6, No. 4, pp. 109-121 (in Korean).
  19. Yang, S. C., Lee, C. J., Kim, Y. B., Lee, S. J., Lim, K. S. (2009). "Estimation of Concrete Strength Properties in Concrete Pavement." Proceedings of the KSRE Conference, pp. 519-524 (in Korean).

피인용 문헌

  1. Development of Maximum Tensile Stress Prediction Model for Airport Concrete Pavements Using Environmental and B777 Aircraft Gear Loadings vol.20, pp.5, 2018, https://doi.org/10.7855/IJHE.2018.20.5.093