DOI QR코드

DOI QR Code

Heuristic Physical Theory of Diffraction for Impedance Polygon

  • Lee, Keunhwa (Dept. of Naval Architecture and Ocean Engineering, Seoul National University) ;
  • Park, Sanghyun (Air wing 6, Republic of Korea Navy) ;
  • Kim, Kookhyun (Dept. of Naval Architecture, Tongmyong University) ;
  • Seong, Woojae (Dept. of Naval Architecture and Ocean Engineering, Seoul National University)
  • 투고 : 2012.12.09
  • 심사 : 2013.02.21
  • 발행 : 2013.02.28

초록

A heuristic physical theory of diffraction (PTD) for an acoustic impedance wedge is proposed. This method is based on Ufimtsev's three-dimensional PTD, which is derived for an acoustic soft or hard wedge. We modify the original PTD according to the process of physical optics (or the Kirchhoff approximation) to obtain a 3D heuristic diffraction model for an impedance wedge. In principle, our result is equivalent to Luebbers' model presented in electromagnetism. Moreover, our approach provides a useful insight into the theoretical basis of the existing heuristic diffraction methods. The derived heuristic PTD is applied to an arbitrary impedance polygon, and a simple PTD formula is derived as a supplement to the physical optics formula.

키워드

참고문헌

  1. J. B. Keller, Geometrical theory of diffraction, J. Opt. Soc. Amer. 52 (1962) 116-130. https://doi.org/10.1364/JOSA.52.000116
  2. R. G. Kouyoumjian, P. H. Pathak, A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface, Proc. IEEE. 62 (1974) 1448-1461. https://doi.org/10.1109/PROC.1974.9651
  3. P. Ya. Ufimtsev, Fundamentals of the Physical Theory of Diffraction , Wiley-IEEE, 2007.
  4. G. D. Maliuzhinets, Excitation, reflection and emission of surface waves from a wedge with given face impedances, Sov. Phys. Dokl. 3 (1958) 752-755.
  5. M. I. Herman, J. L. Volakis, T. B. A. Senior, Analytic expressions for a function occurring in diffraction theory, IEEE Trans. Antennas Propag. AP-35 (1987) 1083-1086.
  6. R. J. Luebbers, Finite conductivity uniform UTD versus knife diffraction prediction of propagation path loss, IEEE Trans. Antennas Propag. AP-32 (1984) 70-76.
  7. R. J. Luebbers, A heuristic UTD slope diffraction coefficient for rough lossy wedges, IEEE Trans. Antennas Propag. 37 (1989) 206-211. https://doi.org/10.1109/8.18707
  8. P. Holm, A new heuristic UTD diffraction coefficient for non-perfectly conducting wedges, IEEE Trans. Antennas Propag. 48 (2000) 1211- 1219. https://doi.org/10.1109/8.884489
  9. H. M. El-Sallabi, I. T. Rekanos, P. Vainikainen, A new heuristic diffraction coefficient for dielectric wedges at normal incidence, IEEE Antennas Wireless Propag. Lett. 1 (2002) 165-168. https://doi.org/10.1109/LAWP.2002.807566
  10. H. M. El-Sallabi, P. Vainikainen, Improvement to diffraction coefficient for non-perfectly conducting wedges, IEEE Trans. Antennas Propag. 53 (2005) 3105-3109. https://doi.org/10.1109/TAP.2005.854534
  11. D.a N. Schettino, F. Moreira, K. Borges, C. Rego, Novel Heuristic UTD Coefficients for the Characterization of Radio Channels, IEEE Trans. on Magnetics. 43 (2007) 1301-1304. https://doi.org/10.1109/TMAG.2006.890975
  12. S. K. Soni, A. Bhattacharya, New heuristic diffraction coefficient for modeling of wireless channel, Prog. in Electromag. Res. 12 (2010) 125-137. https://doi.org/10.2528/PIERC10010301
  13. T. Lertwiriyaprapa, P. H. Pathak, J. L. Volakis, An approximate UTD ray solution for the radiation and scattering by antennas near a junction between two different thin planar material slab on ground plane, Prog. in Electromag. Res. 102 (2010) 227-248. https://doi.org/10.2528/PIER09111809
  14. Sanjay Soni, Amitabha Bhattacharya, Novel three-dimensional dyadic diffraction coefficient for wireless channel, Microwave and Opt. Tech. Lett. 52 (2010) 2132-2136. https://doi.org/10.1002/mop.25402
  15. Daniela N. Schettino, Fernando J. S. Moreira, Cassio G. Rego, Heuristic UTD Coefficients for electromagnetic scattering by lossy conducting wedges, Microwave and Opt. Tech. Lett. 52 (2010) 2657-2662. https://doi.org/10.1002/mop.25557
  16. Ayza Ghorbani, Ali Tajvidy, Emad Torabi, Reza Arablouei, A New Uniform Theory of Diffraction Based Model for Multiple Building Diffraction in the Presence of Trees, Electromagnetics. 31 (2011) 127-146. https://doi.org/10.1080/02726343.2011.548197
  17. J. F. Legendre, T. Marsault, T. Vele, D. Cueff, Heuristic uniform 2D double wedge diffraction based on generalized Fresnel integral, Microwave and Opt. Tech. Lett. 53 (2011) 1841-1846. https://doi.org/10.1002/mop.26154
  18. D. Klement, J. Preissner, V. Stein, Special problems in applying the physical optics method for backscatter computation of complicated objects, IEEE Trans. Antennas Propag. 36 (1988) 228-237. https://doi.org/10.1109/8.1100
  19. K. Kim, J. Cho, J. Kim, D. Cho, A fast esti-mation of sonar cross section of acoustically large and complex underwater targets using a deterministic scattering center model, Appl. Acoust. 70 (2009) 653-660. https://doi.org/10.1016/j.apacoust.2008.07.009
  20. K. Kim, J. Kim, D. Cho, W. Seong, Applying time domain physical optics to acoustic wave backscattering problem, Appl. Acoust. 71 (2010) 321-327. https://doi.org/10.1016/j.apacoust.2009.10.006
  21. P. Ya. Ufimtsev, Elementary edge waves and the physical theory of diffraction, Electromagnetics. 11 (1991) 127-160.
  22. A. Sommerfeld, Mathematische Theorie der Diffraction, Math. Ann. 47 (1896) 317-374. https://doi.org/10.1007/BF01447273
  23. K. Lee, W. Seong, Y. Joo, Modeling of scat-tering from targets in an oceanic waveguide us-ing Kirchhoff/diffraction method, J. Acoust. Soc. Am. 123 (2008) 3757.
  24. K. Lee, W. Seong, Time-domain Kirchhoff model for acoustic scattering from an imped-ance polygon facet, J. Acoust. Soc. Am. 126 (2009) EL14. https://doi.org/10.1121/1.3141887
  25. SYSNOISE Rev 5.6, Users Manual, LMS In-ternational N.V.