DOI QR코드

DOI QR Code

Acoustic Radiation Force Impulse Elastography for Focal Hepatic Tumors: Usefulness for Differentiating Hemangiomas from Malignant Tumors

  • Kim, Ji Eun (Department of Radiology, Gyeongsang National University School of Medicine) ;
  • Lee, Jae Young (Department of Radiology and Radiation Medicine, Seoul National University College of Medicine) ;
  • Bae, Kyung Soo (Department of Radiology, Gyeongsang National University School of Medicine) ;
  • Han, Joon Koo (Department of Radiology and Radiation Medicine, Seoul National University College of Medicine) ;
  • Choi, Byung Ihn (Department of Radiology and Radiation Medicine, Seoul National University College of Medicine)
  • Received : 2012.12.27
  • Accepted : 2013.06.11
  • Published : 2013.09.01

Abstract

Objective: The purpose of this study is to investigate whether acoustic radiation force impulse (ARFI) elastography with ARFI quantification and ARFI 2-dimensional (2D) imaging is useful for differentiating hepatic hemangiomas from malignant hepatic tumors. Materials and Methods: One-hundred-and-one tumors in 74 patients were included in this study: 28 hemangiomas, 26 hepatocellular carcinomas (HCCs), three cholangiocarcinomas (CCCs), 20 colon cancer metastases and 24 other metastases. B-mode ultrasound, ARFI 2D imaging, and ARFI quantification were performed in all tumors. Shear wave velocities (SWVs) of the tumors and the adjacent liver and their SWV differences were compared among the tumor groups. The ARFI 2D images were compared with B-mode images regarding the stiffness, conspicuity and size of the tumors. Results: The mean SWV of the hemangiomas was significantly lower than the malignant hepatic tumor groups: hemangiomas, 1.80 ${\pm}$ 0.57 m/sec; HCCs, 2.66 ${\pm}$ 0.94 m/sec; CCCs, 3.27 ${\pm}$ 0.64 m/sec; colon cancer metastases, 3.70 ${\pm}$ 0.61 m/sec; and other metastases, 2.82 ${\pm}$ 0.96 m/sec (p < 0.05). The area under the receiver operating characteristics curve of SWV for differentiating hemangiomas from malignant tumors was 0.86, with a sensitivity of 96.4% and a specificity of 65.8% at a cut-off value of 2.73 m/sec (p < 0.05). In the ARFI 2D images, the malignant tumors except HCCs were stiffer and more conspicuous as compared with the hemangiomas (p < 0.05). Conclusion: ARFI elastography with ARFI quantification and ARFI 2D imaging may be useful for differentiating hepatic hemangiomas from malignant hepatic tumors.

Keywords

References

  1. Feldman M. Hemangioma of the liver; special reference to its association with cysts of the liver and pancreas. Am J Clin Pathol 1958;29:160-162
  2. Moody AR, Wilson SR. Atypical hepatic hemangioma: a suggestive sonographic morphology. Radiology 1993;188:413-417 https://doi.org/10.1148/radiology.188.2.8327687
  3. Semelka RC, Sofka CM. Hepatic hemangiomas. Magn Reson Imaging Clin N Am 1997;5:241-253
  4. Vilgrain V, Boulos L, Vullierme MP, Denys A, Terris B, Menu Y. Imaging of atypical hemangiomas of the liver with pathologic correlation. Radiographics 2000;20:379-397 https://doi.org/10.1148/radiographics.20.2.g00mc01379
  5. Nelson RC, Chezmar JL. Diagnostic approach to hepatic hemangiomas. Radiology 1990;176:11-13 https://doi.org/10.1148/radiology.176.1.2191359
  6. Yamashita Y, Hatanaka Y, Yamamoto H, Arakawa A, Matsukawa T, Miyazaki T, et al. Differential diagnosis of focal liver lesions: role of spin-echo and contrast-enhanced dynamic MR imaging. Radiology 1994;193:59-65 https://doi.org/10.1148/radiology.193.1.8090922
  7. Claudon M, Cosgrove D, Albrecht T, Bolondi L, Bosio M, Calliada F, et al. Guidelines and good clinical practice recommendations for contrast enhanced ultrasound (CEUS) - update 2008. Ultraschall Med 2008;29:28-44 https://doi.org/10.1055/s-2007-963785
  8. Leslie DF, Johnson CD, MacCarty RL, Ward EM, Ilstrup DM, Harmsen WS. Single-pass CT of hepatic tumors: value of globular enhancement in distinguishing hemangiomas from hypervascular metastases. AJR Am J Roentgenol 1995;165:1403-1406 https://doi.org/10.2214/ajr.165.6.7484574
  9. Quinn SF, Benjamin GG. Hepatic cavernous hemangiomas: simple diagnostic sign with dynamic bolus CT. Radiology 1992;182:545-548 https://doi.org/10.1148/radiology.182.2.1732978
  10. Soyer P, Dufresne AC, Somveille E, Scherrer A. Hepatic cavernous hemangioma: appearance on T2-weighted fast spinecho MR imaging with and without fat suppression. AJR Am J Roentgenol 1997;168:461-465 https://doi.org/10.2214/ajr.168.2.9016227
  11. Yoon JH, Lee JM, Woo HS, Yu MH, Joo I, Lee ES, et al. Staging of hepatic fibrosis: comparison of magnetic resonance elastography and shear wave elastography in the same individuals. Korean J Radiol 2013;14:202-212 https://doi.org/10.3348/kjr.2013.14.2.202
  12. Cho N, Moon WK, Park JS, Cha JH, Jang M, Seong MH. Nonpalpable breast masses: evaluation by US elastography. Korean J Radiol 2008;9:111-118 https://doi.org/10.3348/kjr.2008.9.2.111
  13. Lalitha P, Reddy MCh, Reddy KJ. Musculoskeletal applications of elastography: a pictorial essay of our initial experience. Korean J Radiol 2011;12:365-375 https://doi.org/10.3348/kjr.2011.12.3.365
  14. Lee TH, Cha SW, Cho YD. EUS elastography: advances in diagnostic EUS of the pancreas. Korean J Radiol 2012;13 Suppl 1:S12-S16 https://doi.org/10.3348/kjr.2012.13.S1.S12
  15. Kantarci F, Cebi Olgun D, Mihmanli I. Shear-wave elastography of segmental infarction of the testis. Korean J Radiol 2012;13:820-822 https://doi.org/10.3348/kjr.2012.13.6.820
  16. Nightingale K, McAleavey S, Trahey G. Shear-wave generation using acoustic radiation force: in vivo and ex vivo results. Ultrasound Med Biol 2003;29:1715-1723 https://doi.org/10.1016/j.ultrasmedbio.2003.08.008
  17. Cho SH, Lee JY, Han JK, Choi BI. Acoustic radiation force impulse elastography for the evaluation of focal solid hepatic lesions: preliminary findings. Ultrasound Med Biol 2010;36:202-208 https://doi.org/10.1016/j.ultrasmedbio.2009.10.009
  18. Davies G, Koenen M. Acoustic radiation force impulse elastography in distinguishing hepatic haemangiomata from metastases: preliminary observations. Br J Radiol 2011;84:939-943 https://doi.org/10.1259/bjr/97637841
  19. Fahey BJ, Nelson RC, Bradway DP, Hsu SJ, Dumont DM, Trahey GE. In vivo visualization of abdominal malignancies with acoustic radiation force elastography. Phys Med Biol 2008;53:279-293 https://doi.org/10.1088/0031-9155/53/1/020
  20. Heide R, Strobel D, Bernatik T, Goertz RS. Characterization of focal liver lesions (FLL) with acoustic radiation force impulse (ARFI) elastometry. Ultraschall Med 2010;31:405-409 https://doi.org/10.1055/s-0029-1245565
  21. Gallotti A, D'Onofrio M, Romanini L, Cantisani V, Pozzi Mucelli R. Acoustic Radiation Force Impulse (ARFI) ultrasound imaging of solid focal liver lesions. Eur J Radiol 2012;81:451-455 https://doi.org/10.1016/j.ejrad.2010.12.071
  22. Frulio N, Laumonier H, Carteret T, Laurent C, Maire F, Balabaud C, et al. Evaluation of liver tumors using acoustic radiation force impulse elastography and correlation with histologic data. J Ultrasound Med 2013;32:121-130
  23. Shuang-Ming T, Ping Z, Ying Q, Li-Rong C, Ping Z, Rui-Zhen L. Usefulness of acoustic radiation force impulse imaging in the differential diagnosis of benign and malignant liver lesions. Acad Radiol 2011;18:810-815 https://doi.org/10.1016/j.acra.2011.01.026
  24. Yu H, Wilson SR. Differentiation of benign from malignant liver masses with Acoustic Radiation Force Impulse technique. Ultrasound Q 2011;27:217-223 https://doi.org/10.1097/RUQ.0b013e318239422e
  25. Leslie DF, Johnson CD, Johnson CM, Ilstrup DM, Harmsen WS. Distinction between cavernous hemangiomas of the liver and hepatic metastases on CT: value of contrast enhancement patterns. AJR Am J Roentgenol 1995;164:625-629 https://doi.org/10.2214/ajr.164.3.7863883
  26. Van Hoe L, Baert AL, Gryspeerdt S, Vandenbosh G, Nevens F, Van Steenbergen W, et al. Dual-phase helical CT of the liver: value of an early-phase acquisition in the differential diagnosis of noncystic focal lesions. AJR Am J Roentgenol 1997;168:1185-1192 https://doi.org/10.2214/ajr.168.5.9129409
  27. Bruix J, Sherman M; Practice Guidelines Committee, American Association for the Study of Liver Diseases. Management of hepatocellular carcinoma. Hepatology 2005;42:1208-1236 https://doi.org/10.1002/hep.20933
  28. Friedrich-Rust M, Wunder K, Kriener S, Sotoudeh F, Richter S, Bojunga J, et al. Liver fibrosis in viral hepatitis: noninvasive assessment with acoustic radiation force impulse imaging versus transient elastography. Radiology 2009;252:595-604 https://doi.org/10.1148/radiol.2523081928
  29. Venkatesh SK, Yin M, Glockner JF, Takahashi N, Araoz PA, Talwalkar JA, et al. MR elastography of liver tumors: preliminary results. AJR Am J Roentgenol 2008;190:1534-1540 https://doi.org/10.2214/AJR.07.3123
  30. Ishak KG, Rabin L. Benign tumors of the liver. Med Clin North Am 1975;59:995-1013
  31. DeWall RJ, Bharat S, Varghese T, Hanson ME, Agni RM, Kliewer MA. Characterizing the compression-dependent viscoelastic properties of human hepatic pathologies using dynamic compression testing. Phys Med Biol 2012;57:2273-2286 https://doi.org/10.1088/0031-9155/57/8/2273
  32. D'Onofrio M, Gallotti A, Mucelli RP. Tissue quantification with acoustic radiation force impulse imaging: measurement repeatability and normal values in the healthy liver. AJR Am J Roentgenol 2010;195:132-136 https://doi.org/10.2214/AJR.09.3923

Cited by

  1. Ultrasound elastography for thyroid nodules: recent advances vol.33, pp.2, 2013, https://doi.org/10.14366/usg.13025
  2. Differentiation of benign and malignant focal liver lesions: value of virtual touch tissue quantification of acoustic radiation force impulse elastography vol.32, pp.3, 2015, https://doi.org/10.1007/s12032-015-0543-9
  3. Shear Wave Velocity: A New Quantitative Index to Estimate the Status of Thyroid in Diffuse Thyroid Disease vol.2015, pp.None, 2013, https://doi.org/10.1155/2015/626308
  4. Ultrasound elastography: liver vol.40, pp.4, 2013, https://doi.org/10.1007/s00261-015-0373-4
  5. The role of intraoperative ultrasonography in the diagnosis and management of focal hepatic lesions vol.34, pp.4, 2015, https://doi.org/10.14366/usg.15014
  6. Does the Reporting Quality of Diagnostic Test Accuracy Studies, as Defined by STARD 2015, Affect Citation? vol.17, pp.5, 2016, https://doi.org/10.3348/kjr.2016.17.5.706
  7. Laparoscopic Radiofrequency Ablation for Large Subcapsular Hepatic Hemangiomas: Technical and Clinical Outcomes vol.11, pp.2, 2016, https://doi.org/10.1371/journal.pone.0149755
  8. Selection and Reporting of Statistical Methods to Assess Reliability of a Diagnostic Test: Conformity to Recommended Methods in a Peer-Reviewed Journal vol.18, pp.6, 2017, https://doi.org/10.3348/kjr.2017.18.6.888
  9. Combination of acoustic radiation force impulse imaging, serological indexes and contrast-enhanced ultrasound for diagnosis of liver lesions vol.23, pp.30, 2017, https://doi.org/10.3748/wjg.v23.i30.5602
  10. The Place of Elastography in Evaluating the Efficacy of Radiofrequency Ablation of Thyroid Nodules vol.83, pp.11, 2017, https://doi.org/10.1177/000313481708301124
  11. Utility of point shear wave elastography in characterisation of focal liver lesions vol.12, pp.2, 2013, https://doi.org/10.1080/17474124.2018.1415144
  12. Role of Acoustic Radiation Force Impulse Elastography in the Characterization of Focal Solid Hepatic Lesions vol.8, pp.1, 2013, https://doi.org/10.4103/jcis.jcis_64_17
  13. Correlation of the Stiffness of Hepatocellular Carcinoma and Surrounding Liver Parenchyma by Point Shear Wave Elastography vol.35, pp.1, 2013, https://doi.org/10.1177/8756479318801587
  14. Diagnostic effect of shear wave elastography imaging for differentiation of malignant liver lesions: a meta-analysis vol.19, pp.None, 2019, https://doi.org/10.1186/s12876-019-0976-2
  15. Is ultrasound elastography adding value in diagnosis of focal hepatic lesions? Our experience in a single-center study vol.50, pp.1, 2013, https://doi.org/10.1186/s43055-019-0113-9
  16. The value of acoustic radiation force impulse imaging in preoperative prediction for efficacy of high-Intensity focused ultrasound uterine fibroids ablation vol.37, pp.1, 2013, https://doi.org/10.1080/02656736.2020.1758803
  17. Differences in the therapeutic effects of high-intensity focused ultrasound (HIFU) ablation on uterine fibroids with different shear wave velocity (SWV): a study of histopathological characteristics vol.37, pp.1, 2013, https://doi.org/10.1080/02656736.2020.1849827
  18. Role of shear wave sono-elastography (SWE) in characterization of hepatic focal lesions vol.51, pp.1, 2013, https://doi.org/10.1186/s43055-020-00186-2
  19. Shear-wave velocity for colorectal cancer liver metastases as a potential prognostic factor after chemotherapy: a preliminary study vol.76, pp.3, 2013, https://doi.org/10.1016/j.crad.2020.09.027