DOI QR코드

DOI QR Code

Analysis of Heavy Metal Contaminated Soils Remediation Using Reactive Drains

반응성 배수재를 이용한 중금속 오염토양의 정화효율 분석

  • Park, Jeongjun (Dept. of Civil and Environmental Engineering, Univ. of Incheon) ;
  • Choi, Changho (Dept. of Geotechnical Engineering, Korea Institute of Construction Technology) ;
  • Shin, Eunchul (Dept. of Civil and Environmental Engineering, Univ. of Incheon)
  • Received : 2013.02.15
  • Accepted : 2013.03.15
  • Published : 2013.03.30

Abstract

This paper presents the analysis condition of remediation technique of contaminated fine-grained soil and physical properties of bio-degradable drain for analysis site applicability using bio-degradable drain method. As the result, two kinds of developed degradable drains (cylindricality shaped and harmonica shaped) are satisfied the Korean Industrial Standard. And the cylindricality shaped drain has an excellent discharge capacity than that of another one. By the results of laboratory test, the citric acid is chosen as the washing agent because it has low toxicity, so it is able to minimize harmful influence to environment. Furthermore the subject contaminants were selected as Cd, Cu and Pb. Based on the field pilot test results, the most remedial efficiency is the use of reactive material applied in bio-degradable drain method with the process of injecting the washing agent and extraction of contaminated fluid.

본 논문에서는 생분해 배수재를 이용한 오염토양 정화기술의 현장적용성을 평가하기 위하여 생분해 배수재의 물리적 특성시험을 수행하였으며, 이를 이용한 현장실험을 통하여 중금속 오염토양의 정화효율을 분석하였다. 두 종류(실린더 코어형, 하모니카형)의 생분해 배수재에 대한 시험결과, 실린더 코어형 배수재의 경우, 한국산업규격 표준시방에서 제시하는 기준치를 모두 만족하였으며, 하모니카형 생분해성 배수재는 실린더 코어형 배수재에 비해 배수성능이 상당히 낮은 결과를 나타내었다. 또한 오염토양 복원시 사용한 세정제로는 자체독성이 적어 생태계에 미치는 영향을 최소화하며, 생물학적 재순환시스템과의 최적인 조건을 지니고 있는 시트르산(ctric acid)을 선정하여 중금속 중 Cd, Cu, Pb을 현장실험 대상 오염물질로 선정 후 실험을 수행하였다. 현장실험은 3가지 설치조건을 고려하여 정화효율을 분석하였으며, 반응물질이 도포된 생분해 배수재를 이용하여 세척제를 주입 추출을 동시에 수행한 경우가 복원효율이 가장 높은 것으로 평가되었다.

Keywords

References

  1. Chapelle, F. H.(1993), Ground-water Microbiology and Geochemistry, John Wiley and Sons, pp.99-100.
  2. Cho, H. H. and Park, J. W.(2004), "Hybrid barriers of iron and modified-bentonite for the remediation of multi-contaminated water", J. Korean Society on water Environment, Vol.20, No.5, pp.512-519.
  3. Gabr, M. A., Williamson, A., Sabodish, M., and Bowders, J. J.(1999). "BTEX extraction from clay soil using prefabricated vertical drains". Journal of Geotechnical and Geoenvironmental Engineering, Vol.125, No.3, pp.615-618. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:7(615)
  4. Gillham, R. W. and O'Hannesin, S. F.(1994), "Enhanced degradation of halogenated aliphatics by zero-valent iron", Ground Water, 32, pp.958-967. https://doi.org/10.1111/j.1745-6584.1994.tb00935.x
  5. ISO 14855-1(2005), "Determination of the ultimate aerobic biodegradability of plastic materials under controlled composing conditions-Method by analysis of evloved carbon dioxide-Part 1 : General method"
  6. Kam, S. K., Hyun, S. S., and Lee, M. G.(2011), "Removal of divalent heavy metal ions by Na-P1 synthesized from Jeju Scoria", J. of Korean Environmental Sciences Society, Vol.20, No.10, pp.1337-1345. https://doi.org/10.5322/JES.2011.20.10.1337
  7. Kim, J. H., Cho, S. D., Chai. J. G., and Sato, H. (2010), "Characteristics of biodegradable plastic drain board", J. Korean Geosynthetics Society, Vol.9, No.3, pp.67-75.
  8. Korte, N. E., Grittini, C., Muftikian, R., and Fernando, Q. (1995), "The Use of Palladized Iron as a Means of Treating Chlorinated Ethenes and Ethanes", Emerging Technologies in Hazardous Waste Management, Vol.7, pp.51-53.
  9. Lee, H. J. and Park, J. W.(2004), "removal of trichloroethylene, Cr(VI) and Nitrate in leachate by bentonite and zero valent iron", J. Korean Geo-Environmental Society, Vol.5, No.2, pp.5-75.
  10. Matheson, L. J. and Tratnyek, P. G.(1994), "Reductive Dehalogenation of Chlorinated Methanes by Iron Metal", Environmental Science and Technology, 28, pp.2045-2053. https://doi.org/10.1021/es00061a012
  11. Muftikian, R., Fernando, O., and Korte, N.(1995), "A Method for the Rapid Dechlorination of Low Molecular Weight Chlorinated Hydrocarbons in Water", Water Research, Vol.29, No.10, pp.24-34.
  12. O'Hannesin, S. F. and Gillham, R. W.(1998), "Long-term performance of an in situ "iron wall" for remediation of VOCs", Ground Water, 36, pp.164-170. https://doi.org/10.1111/j.1745-6584.1998.tb01077.x
  13. Park, J. J. (2007), "Implementation of Infinite Boundary Condition Considering Superposed Theory on SVE Remediation System", J. Korean Geosynthetics Society, Vol.6, No.3, pp.9-16.
  14. Shin, E. C., Park, J. J., and Lee, K. W. (2008), "Numerical Analysis of Soil Vapour Extraction Remediation System using Prefabricated Vertical Drain", J. Korean Geosynthetics Society, Vol.7, No.4, pp.1-8.
  15. Shin, E. C., Park, J. J., and Zhanara, N.(2011), "Evaluation discharge capacity with various prefabricated vertical drain core types", International Journal of Geo-Engineering, Vol.3, No.4, pp.5-14.
  16. 梅木康之, 須山泰行, 八木正 (2005), "生分解性 Plastic drain board LACT-BOARD の開發と適用", 土木建設技術 Symposium 2005 論文集, 土木學會 建設技術硏究委員會, pp.29-34.

Cited by

  1. 중금속으로 오염된 지반의 침하계측을 위한 수치사진측량의 적용성 평가 vol.19, pp.4, 2013, https://doi.org/10.12814/jkgss.2020.19.4.085