DOI QR코드

DOI QR Code

The Optimization of Silver Leaching from the Samjo Mine Concentrate by Thiourea

티오요소를 이용한 삼조광업 정광으로부터 은 용출 최적화

  • Yang, Gwon-Seung (Department of Advanced Materials Engineering, Chosun University) ;
  • Kim, Bong-Ju (Department of Energy and Resource Engineering, Chosun University) ;
  • Choi, Nag-Choul (Engineering Research Institute, Chonnam National University) ;
  • Park, Cheon-Young (Department of Energy and Resource Engineering, Chosun University)
  • 양권승 (조선대학교 신소재공학과) ;
  • 김봉주 (조선대학교 에너지자원공학과) ;
  • 최낙철 (전남대학교 공업기술연구소) ;
  • 박천영 (조선대학교 에너지자원공학과)
  • Received : 2012.10.17
  • Accepted : 2013.03.21
  • Published : 2013.03.31

Abstract

This study was carried out to test the possibility of using an environmentally friendly method of leaching silver concentrate from the Samjo mine. The Samjo mine ore contained minerals such as pyrite, chalcopyrite, galena, arsenopyrite, and sphalerite. The concentrate samples tested with the thiourea solution were roasted at $750^{\circ}C$. The results of different experimental conditions showed that the highest silver leaching rate was obtained when the concentration of thiourea was at 0.8 g with ferric sulfate at 0.425 g and the leaching temperature at $60^{\circ}C$. The Ag leaching rate obtained was 91.5% at a pulp density of 10%. However, in the XRD analysis, peaks of pyrite, galena, and hematite were still found in the leached solid residues in which the Ag leaching rate was the highest. it is expected that the unrecovered silver in the solid residue can be lost.

티오요소를 사용하여 삼조광업 정광으로부터 은을 친환경적으로 용출시키고자 하였다. 삼조광산의 광석은 황철석, 황동석, 방연석, 유비철석, 섬아연석 등과 같은 광석광물들로 구성되어 있다. 티오요소 용출실험에는 $750^{\circ}C$에서 소성시킨 소성정광을 사용하였다. 다양한 실험조건으로 용출실험을 수행한 결과, 본 실험 조건 중 가장 높은 은 용출율이 나타나는 조건은 티오요소 농도 0.8 g일 때, 황산 제2철 0.425 g일 때, 그리고 용출온도 $60^{\circ}C$일 때였다. 광액농도 10%일 때 은 용출율 91.5%를 얻었다. 그러나 고체 잔유물에 대해서 XRD 분석을 수행한 결과, 은 용출율이 가장 높은 고체 잔유물들에서 황철석, 방연석, 적철석 등이 나타났다. 이러한 결과로 미루어 볼 때 고체 잔유물에 포함된 은은 회수하지 못하고 소실될 것으로 예상된다.

Keywords

References

  1. Almeida, M.F. and Amarante, M.A. (1995) Leaching of a silver bearing sulphide by-product with cyanide, thiourea and chloride solutions. Minerals Engineering, 8, 257-271. https://doi.org/10.1016/0892-6875(94)00124-U
  2. Amer, A.M. (2002) Processing of copper anode-slimes for extraction of metal values. Physicochemical problems of Mineral Processing, 36, 123-134.
  3. Ayata, S. and Yildiran, H. (2001) A novel technique for silver extraction from silver sulphide ore. Turkish Journal of Chemistry, 25, 187-191.
  4. Deng, T. and Liao, M. (2002) Gold recovery enhancement from a refractory flotation concentrate by sequential bioleaching and thiourea. Hydrometallurgy, 63, 249-255. https://doi.org/10.1016/S0304-386X(01)00226-2
  5. Deng, T.L. Liao, M.X. Wang, M.H. Chen, Y.W., and Belzile, N. (2001) Enhancement of gold extraction from biooxidation residues using an acidic sodium sulphite-thiourea system. Minerals Engineering, 14, 263-268. https://doi.org/10.1016/S0892-6875(00)00181-3
  6. Garcia, O. Jr. Bigham, J.M., and Tuovinen, O.H. (1995) Oxidation of galena by Thiobacillus ferrooxidans and Thiobacillus thiooxidans. Canadian Journal of Microbiology, 41, 508-514. https://doi.org/10.1139/m95-067
  7. Gonen, N. Korpe, E. Yildirim, M.E., and Selengil, U. (2007) Leaching and CIL processes in gold recovery from refractory ore with thiourea solutions. Minerals Engineering, 20, 559-565. https://doi.org/10.1016/j.mineng.2006.11.003
  8. Groenewald, T. (1977) Potential application of thourea in the precessing of gold. Journal of the South African Institute of Mining and Metallurgy, June, 217-223.
  9. Kim, E.Y. Kim, M.S. Lee, J.C. Yoo. K.K., and Jeong, J.K. (2010) Leaching behavior of copper using elelctrogenerated chlorine in hydrochloric acid solution. Hydrometallurgy, 100, 95-102. https://doi.org/10.1016/j.hydromet.2009.10.009
  10. Kozin, L.F. Berezhnoi, E.O., and Bogdanova, A.K. (2002) Kinetic parameters of the dissolution of gold in thiourea solutions. Theoretical and Experimental Chemistry, 38, 388-392. https://doi.org/10.1023/A:1022283921842
  11. Kulandaisamy, S. Rethinaraj, J.P. Adaikkalam, P. Srinivasan, G.N., and Raghavan, M. (2003) The aqueous recovery of gold from electronic scrap. Recycling, Augst, 35-41.
  12. Li, J. and Miller, J.D. (2006) A review of gold leaching in acid thiourea solutions. Mineral processing & Extractive Meatall. Rev., 27, 177-214. https://doi.org/10.1080/08827500500339315
  13. Li, J. and Miller, J.D. (2007) Reaction kinetics of gold dissolution in acid thiourea solution using ferric sulfate as oxidant. Hydrometallurgy, 89, 279-288. https://doi.org/10.1016/j.hydromet.2007.07.015
  14. Lin, J.C. and Huarng, J.J. (1994) Electrochemical stripping of gold from Au-Ni-Cu electronic connector scrap in an aqueous solution of thiourea. Journal of Applied Electrochemistry, 24, 157-165.
  15. Maddox, L.M. Bancroft, G.M. Scaini, M.J., and Lorimer, J.W. (1998) Invisible gold: comparison of Au deposition on pyrite and arsenopyrite. American Mineralogist, 83, 1240-1245.
  16. Schulze, R.G. (1984) New aspects in thiourea leaching of precious metals. Journal of Metals, June, 62-65.
  17. Tanriverdi, M. Mordogan, H., and Ipekoglu, U. (2005) Leaching of Ovacik gold ore with cyanide. thiourea and thiosulfate. Minerals Engineering, 18, 363-365. https://doi.org/10.1016/j.mineng.2004.06.012
  18. Tremblay, L, Deschenes, G, Ghali, E., and McMullen, J. (1996) Gold recovery from a sulphide bearing gold ore by percolation leaching with thiourea. International Journal of Mineral Processing, 48, 225-244. https://doi.org/10.1016/S0301-7516(96)00029-4
  19. Vaughan, J.P. (2004) The process mineralogy of gold: the classification of ore types. The Member Journal of TMS, July, 46-48.

Cited by

  1. Mineralogical Transformation of Gold-silver Bearing Sulfide Concentrate by Mechanochemical Activation, and their Gold-silver Leaching with Non-cyanide Solution vol.27, pp.3, 2014, https://doi.org/10.9727/jmsk.2014.27.3.115