DOI QR코드

DOI QR Code

Photocatalytic Degradation of Acetaldehyde and MEK using Batch Type Photo-Reactor

회분식 광촉매반응기를 이용한 아세트알데하이드와 MEK 제거특성 연구

  • Cha, Wang Seog (Department of Environmental Engineering, Kunsan National University)
  • Received : 2012.10.26
  • Accepted : 2013.03.07
  • Published : 2013.03.31

Abstract

The kinetics of photocatalytic degradation of gaseous acetaldehyde and methylethylketone(MEK) were studied by the batch scale of photo-reactor. Variable parameters were initial concentration of acetaldehyde and MEK, water vapor content, and temperature. The photocatalytic degradation rate was increased with increasing concentration of acetaldehyde and MEK, but maintained gentle increase beyond a certain concentration. The Langmuir-Hinselwood model was successfully applied to correlate experimental data. Water vapor inhibited the degradation reaction of acetaldehyde and MEK. The optimum reaction temperature was $45^{\circ}C$ for acetaldehyde and MEK.

본 휘발성유기화합물인 아세트알데하이드와 MEK(methylethylketone)의 광촉매분해특성을 회분식 광반응기를 이용하여 연구하였다. 광촉매분해반응의 주요 반응변수인 아세트알데하이드와 MEK의 초기농도, 수분함량, 그리고 반응온도의 영향을 조사하였다. 아세트알데하이드와 MEK의 광촉매 분해속도에서 어느 일정농도까지는 초기농도가 증가할수록 증가하나, 그 이상에서는 완만한 증가형태를 보이며, 분해반응형태는 Langmuir-Hinselwood 모델이었다. 아세트알데하이드와 MEK의 광분해반응에 있어 수분은 inhibitor 역할을 수행하였다. 그리고 아세트알데하이드와 MEK 분해반응에 있어 최적의 반응온도는 $45^{\circ}C$이었다.

Keywords

References

  1. Dibble, L.A., and G.B. Raupp(1992), Fluidized Bed Photocatalytic oxidation of trichloroethlene in contaminated air streams. Environ. Sci. Technol., 26, 492-495. DOI: http://dx.doi.org/10.1021/es00027a006
  2. Anderson, M.A., S. Yamazakinichida, and C.M. Salvador(1993), Photodegradition of TCE in the Gas Phase using TiO2 porous ceramic membranes. In Photocatalytic Purification and Treatment of Water and Air. Elsevier Science Publisher, 405-418.
  3. Peral, J. and D.F. Ollis(1992), Heterogeneous photocatalytic oxidation of gas-phase organics for air purification: acetone, 1-butanol, butyraldehyed, formaldehyde and m-xylene oxidation. J. Catalysis, 136, 554-565. DOI: http://dx.doi.org/10.1016/0021-9517(92)90085-V
  4. Muggli, D.S. and J.L. Falconer(1999), Parallel pathways for photocatalytic decomposition of acetic acid on TiO2, J. Catalysis, 187, 230-237. DOI: http://dx.doi.org/10.1006/jcat.1999.2594
  5. Reztsova, T., C. Chang, J. Koresh, and H. Idriss(1999), Dark and photoreaction of ethanol and acetaldehyde over $TiO_{2}$/carbon molecular sieve fibers. J. Catalysis, 185, 223-235. DOI: http://dx.doi.org/10.1006/jcat.1999.2520
  6. Jang, H.T., J. Kim, and W. Cha(2006), The performance of photocatalyst filter for an air cleaner-effect of novel metal, J. of Korea Academic-Industrial Coorperation Society, 7(6), 1284-1291.
  7. Wang, K.H., H.H. Tsai, and Y.H. Hseieh(1998), The Kinetics of Photocatalytic Degradation of Trichloroethylene in Gas Phase over TiO2 supported on Glass Bead. Applied catalysis B: Environmental, 17, 313-320. DOI: http://dx.doi.org/10.1016/S0926-3373(97)00099-4
  8. d'Hennezel, O., P. Pichat, and D.F. Ollis(1998), Benzene and toluene gas-phase photocatalytic degradation over H2O and HCl pretrated TiO2: By-products and mechanisms. J. Photochem. Photobiol. A: Chem., 118, 197-204. DOI: http://dx.doi.org/10.1016/S1010-6030(98)00366-9
  9. Kim, S.B, Y.M. Jo, and W.S Cha(2001), Effects of Water Vapor, Molecular Oxygen and Temperature on the Photocatalytic Degradatio of Gas-Phase VOCs using TiO2 Photocatalyst: TCE and Acetone, J. KOSAE, 17(E2), 35-42.
  10. Kim, S.B., W.S. Cha, and S.C. Hong(2002), Photocatalytic Degradation of Gas-Phase Methanol and Toluene Using Thin-Film TiO2 photocatalyst II. Kinetic Study for the Effect of Initial Concentration and Photon Flux, J. Ind. Eng. Chem., 8(2), 162-167.