DOI QR코드

DOI QR Code

A Study for Carbon dioxide Removal Process Using Methanol Solvent in DME Manufacture Process

DME 생산공정에서 메탄올을 이용한 이산화탄소 제거 공정 연구

  • Cho, Duhee (Department of Chemical Engineering, Kong Ju National University) ;
  • Rho, Jaehyun (Department of Chemical Engineering, Kong Ju National University) ;
  • Kim, Dong Sun (Department of Chemical Engineering, Kong Ju National University) ;
  • Cho, Jungho (Department of Chemical Engineering, Kong Ju National University)
  • Received : 2013.01.23
  • Accepted : 2013.03.07
  • Published : 2013.03.31

Abstract

In this study, simulation works have been performed for the modeling of $CO_2$ removal process contained in the DME production process through an absorber-stripper system using methanol aqueous solution. Aspen Plus release 7.3 in AspenTech company was utilized as a simulation tool and PC-SAFT modeling equation of state was used as a thermodynamic model. Fitting parameters built-in PC-SAFT model was determined by regressing experimental data, predicted results using PC-SAFT model were compared with experimental data in order to verify the exactness of the thermodynamic model. Optimization works have been performed to reduce the utility consumptions using solvent circulation rate, column operating pressure and feed stage location as manipulated variables.

본 연구에서는 Dimethyl ether (DME) 생산 공정 중에 포함되어 있는 이산화탄소 제거를 위한 용매로써 메탄올 수용액을 사용하는 공정에 대한 전산모사를 수행하였다. 공정모사를 위하여 Aspen tech 사의 Aspen Plus release 7.3을 사용하였으며, 열역학 모델식으로는 PC-SAFT 모델식을 사용하였다. PC-SAFT 모델식에서 필요한 이성분계 상호작용 매개변수를 결정하기 위하여 실험 데이터를 수집하고 회귀분석을 통해 새롭게 결정하였으며, 결정한 매개변수의 정확성은 실험 데이타와의 비교를 통해 검증하였다. 한편, 이러한 모델식과 검증한 매개변수를 사용하여 공정을 모델링 하였으며 최적 순환유량과 운전압력 그리고 원료 주입단 등을 결정하여 공정 최적화를 수행하였다.

Keywords

References

  1. T. A. Semelsberger, R. L. Borup, and H. L. Greene, "Dimethyl Ether (DME) as an Alternative Fuel", Journal of Power Sources, 156, 497 (2006). DOI: http://dx.doi.org/10.1016/j.jpowsour.2005.05.082
  2. C. Arcoumanis, C. Bae, R. Crookes, and E. Kinoshita, "The potential of dimethylether (DME) as an alternative fuel for compression-ignition engines: A review", Fuel, 87, 1014 (2008). DOI: http://dx.doi.org/10.1016/j.fuel.2007.06.007
  3. C. W. Choi, W. Cho, Y. S. Baek, and K. H. Row, "Experimental Study on the Synthesis of Dimethyl Ether" J. Korean Ind. Eng. Chem. 17, 125, (2006).
  4. Y. G. Mo, W. Cho, and Y. S. Baek, "Development of Direct DME Synthesis Process" J. Korean Institute of Gas 14, 41, (2010).
  5. J. Gross and G. Sadowiski, "Perturbed-Chain SAFT: An Equation of State Based on a Perturbation Theory for Chain Molecules", Ind. Eng. Chem. Res., 40, 1244, (2001). DOI: http://dx.doi.org/10.1021/ie0003887
  6. I. Senol., "Perturbed-Chain Statistical Association Fluid Theory (PC-SAFT) Parameters for Propane, Ethylene, and Hydrogen under Supercritical Conditions" Chem. Eng. Sci., 59, 1244, (2011).
  7. S. H. Huang and M. Radosz, "Equation of State for Small, Large, Polydisperse and Associating Molecules", Ind. Eng. Chem. Res., 29, 2284, (1990). DOI: http://dx.doi.org/10.1021/ie00107a014
  8. S. H. Huang and M. Radosz, "Equation of State for Small, Large, Polydisperse and Associating Molecules: Extention to Fluid Mixtures", Ind. Eng. Chem. Res., 30, 1994, (1991). DOI: http://dx.doi.org/10.1021/ie00056a050
  9. N. F. Carnahan and K. E. Starling, "Equation of State for Nonattracting Rigid Spheres", J. Chem, Phys., 51, 635, (1969). DOI: http://dx.doi.org/10.1063/1.1672048
  10. M. S. Wertheim, "Fluids with Highly Directional Attractive Forces. I. Statistical Thermodynamics", J. Stat. Phys., 35, 19, (1984). DOI: http://dx.doi.org/10.1007/BF01017363
  11. M. S. Wertheim, "Fluids with Highly Directional Attractive Forces. II. Thermodynamics Perturbation Theory and Integral Equations", J. Stat. Phys., 35, 35, (1984). DOI: http://dx.doi.org/10.1007/BF01017363
  12. W. G. Chapman, K. E. Gubbins, G. Jackson and M. Radoz, "New Reference Equation of State for Associating Liquids", Ind. Eng. Chem. Res., 29, 1709, (1990). DOI: http://dx.doi.org/10.1021/ie00104a021
  13. H.I. Britt and R.H. Luecke, "The estimation of parameters in nonlinear implicit models", Technometrics, 15, 233-247 (1973). DOI: http://dx.doi.org/10.1080/00401706.1973.10489037
  14. D. C. Montgomery, "Introduction to Linear Regression Analysis", 1, 51, John Wiley & Sons Inc, San Francisco, (2012).
  15. J. H. Hong, R. Kobayashi, "Vapor-liquid equilibrium studies for carbon dioxide-methanol systems", Fluid Phase Equilibria, 41, 269, (1988). DOI: http://dx.doi.org/10.1016/0378-3812(88)80011-6
  16. H. Schlichting, "Experimentelle Bestimmung und Korrelierung der Loeslichkeit verschiedener Loesungsmittel in Hochdruckgasen", Ph. D. Thesis, TU Berlin, Berlin, Germany, (1991).
  17. R. S. RAMALHO, F. M. TILLER, W. J. JAMES, D. W. BUNCH, "A Rapid Method for Obtaining Vapor-Liquid Equilibrium Data. Theoretical Aspects and Simple and Continuous Distillation Methods", IND. ENG. CHEM., 53, 895, (1961). DOI: http://dx.doi.org/10.1021/ie50623a023
  18. Z. Zong, X. Yang, X. Zheng, "Determination of Phase Equilibria for Systems Containing Methyl tert -Butyl Ether", Ranliao Huaxue Xuebao, 15, 32, (1987).