DOI QR코드

DOI QR Code

Leaf variants of Pinus and their ITS DNA sequences

소나무속 잎 변이와 그의 ITS DNA 염기서열

  • Koo, JaChoon (Division of Science Education and The Institute for Science Education, Chonbuk National University) ;
  • Whang, Sung Soo (Division of Science Education and The Institute for Science Education, Chonbuk National University)
  • 구자춘 (전북대학교 과학교육학부, 과학교육연구소) ;
  • 황성수 (전북대학교 과학교육학부, 과학교육연구소)
  • Received : 2013.02.14
  • Accepted : 2013.03.13
  • Published : 2013.03.29

Abstract

ITS DNA sequences of two variants of Pinus spp. having single fasciculate leaf or two to three fasciculate leaves within an individual were analysed in order to determine their origin. Also, the same DNA locus of P. densiflora, P. rigida and P. koraiensis, distributed at the same region together with the OTUs having leaf variations, were analysed to compare with each other. Aligned sequences including ITS1, 5.8S and ITS2 were 580~584 bp in length. The 5.8S region was well conserved among all the OTUs we tested except for P. koraiensis, which has two nucleotide substitutions. The partial ITS1 region upstream of the 5.8S region showed relatively high sequence diversity compare to the ITS2 and has 181~185 bp in length. In this region, the sequences of the two variants were identical to that of P. densiflora. The ITS2 has identical for all OTUs in length and the two variants also have same sequences compare to that of P. densiflora. These two variants and samples of P. densiflora were grouped together in the UPGMA tree with 100% similarity level. The result strongly suggest that these two variants were originated from P. densiflora.

소나무속내 속생 잎의 수가 1개인 종류와 한 개체에서 2~3개의 속생 잎 수를 갖는 종류의 기원을 밝히고자 ITS DNA 지역의 염기서열을 조사하였다. 또한 속생 잎 수 변이가 출현하는 지역에서 생육하는 소나무, 리기다소나무 그리고 잣나무 등의 동일지역 염기서열을 비교 조사하였다. 확인된 ITS1, 5.8S 그리고 ITS2 DNA 등 3지역의 총 길이는 종류에 따라서 580~584 염기이었으며, ITS1 지역에서 가장 변이가 크게 나타났다. 5.8S 지역은 잣나무의 2개 염기 치환을 제외하면 조사된 모든 종류에서 일치하였다. 조사된 일부 ITS1 지역은 5.8S 위쪽으로 종에 따라 181~185 염기이며, 1개 또는 2~3개의 속생 잎 수를 갖는 변이들은 소나무와 동일한 염기서열로 확인되었다. ITS2 지역은 모두 237 염기이며, 소나무와 잎 변이들의 염기서열은 일치하였다. 확인된 염기서열을 이용하여 유집분석을 수행한 결과는 소나무와 속생 잎 수 변이들이 유사도 100%로 유집되었다. 따라서 조사된 속생 잎 수 변이들은 소나무의 속생 잎 수 변이로 최종 판별되었다.

Keywords

References

  1. Abbott, R. J., M. J. Hegarty, S. J. Hiscock and A. C. Brennan. 2010. Homoploid hybrid speciation in action. Taxon 59: 1375-1386.
  2. Arnold, M. L. 1997. Natural Hybridization and Evolution. Oxford University Press, New York.
  3. Baldwin, B. G., M. J. Sanderson, J. M. Porter, M. F. Wojciechowski, C. S. Campbell and M. J. Donoghue. 1995. The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Annals of Missouri Botanical Garden 82: 257-277.
  4. Buckler IV, E. S. and T. P. Holtsford. 1996a. Zea ribosomal repeat evolution and substitution patterns. Molecular and Biological Evolution 13: 623-632. https://doi.org/10.1093/oxfordjournals.molbev.a025622
  5. Buckler IV, E. S. and T. P. Holtsford. 1996b. Zea systematics: ribosomal ITS evidence. Molecular Biology and Evolution. 13: 612-622. https://doi.org/10.1093/oxfordjournals.molbev.a025621
  6. Campbell, C. S., W. A. Wright, M. Cox, T. F. Vining, C. S. Major and M. P. Arsenault. 2005. Nuclear ribosomal DNA internal transcribed spacer 1 (ITS1) in Picea (Pinaceae): sequence divergence and structure. Molecular Phylogenetics and Evolution 35: 165-185. https://doi.org/10.1016/j.ympev.2004.11.010
  7. Doyle, J. J. and J. S. Doyle. 1987. A rapid DNA isolation procedure for small quantities leaf tissue. Phytochemical Bulletin 19: 11-15.
  8. Farjon, A. 1984. Pines. E.J. Brill. Leiden.
  9. Farjon, A. 1990. Pinaceae: drawings and descriptions of the genera Abies, Cedrus, Pseudolarix, Keteleeria, Nothotsuga, Tsuga, Cathaya, Pseudotsuga, Larix and Picea (Regnum Vegetabile 121). Konigstein: Koeltz Scientific Books.
  10. Farjon, A. and B. T. Styles. 1997. Flora Neotropica Monograph 75. Pinus (Pinaceae). New York: Published for Organization for Flora Neotropica by The New York Botanical Garden.
  11. Frankis, M. P. 1989. Generic inter-relationship in Pinaceae. Notes of the Royal Botanic Garden Edinburgh 45: 527-548.
  12. Gao J., B. Wang, J.-F. Mao, P. Ingvarsson, Q.-Y. Zeng and X.-R. Wang. 2012. Demography and speciation history of the homoploid hybrid pine Pinus densata on the Tibetan Plateau. Molecular Ecology 21: 4811-4827. https://doi.org/10.1111/j.1365-294X.2012.05712.x
  13. Gernandt, D. S. and A. Liston. 1999. Internal transcribed spacer region evolution in Larix and Pseudotsuga (Pinaceae). Americal Journal of Botany 86: 711-723. https://doi.org/10.2307/2656581
  14. Gernandt, D. S., A Liston and D. Pinero. 2001. Variation in the nrDNA ITS of Pinus subsection Cembroides, implications for molecular systematic studies of pine species complexes. Molecular Phylogenetic Evolution 21: 449-467. https://doi.org/10.1006/mpev.2001.1026
  15. Grant, V. 1981. Plant Speciation. Columbia University Press, New York.
  16. Gross, B. L. and L. H. Rieseberg. 2005. The ecological genetics of homoploid hybrid speciation. Journal of Heredity 96: 241-252. https://doi.org/10.1093/jhered/esi026
  17. Hong, Y.-P., H.-Y. Kwon and Y.-Y. Kim. 2006. Distribution pattern of cpSSR variants in Korean populations of Japanese red pine. Journal of Korean Forest Society 95: 435-442. (in Korean)
  18. Howarth, D. G. and D. A. Baum. 2005. Genealogical evidence of homoploid hybrid speciation in an adaptive radiation of Scaevola (Goodeniaceae) in the Hawaiian islands. Evolution 59: 948-961. https://doi.org/10.1111/j.0014-3820.2005.tb01034.x
  19. Hyun, S. K. and K. Y. Ahn. 1959. Principal characteristics of Pinus rigitaeda. Research Report of the Institute of Forest Genetics 1: 35-50. (in Korean)
  20. Hyun, S. K. and S. H. Hong. 1969. The growth performance of Pitch-Loblolly hybrid pine produced by different geographic races of Loblolly Pine in their early age. Research Report of the Institute of Forest Genetics 7: 35-43. (in Korean)
  21. Jun, K. S. and S. H. Hong. 1974. Growth performance of Pinus rigitaeda and other related hybrids at different site. Research Report of the Institute of Forest Genetics 11: 33-51. (in Korean)
  22. Kan, X.-Z., S.-S. Wang, X. Ding and X.-Q. Wang. 2007. Structural evolution of nrDNA ITS in Pinaceae and its phylogenetic implications. Molecular Phylogenetics and Evolution 44: 765-777. https://doi.org/10.1016/j.ympev.2007.05.004
  23. Markos, S. and B. G. Baldwin. 2002. Structure, molecular evolution, and phylogenetic utility of the $5^{\circ}C$ region of the external transcribed spacer of 18S-26S rDNA in Lessingia (Compositae, Asteraceae). Molecular Phylogenetic Evolution 23: 214-228. https://doi.org/10.1016/S1055-7903(02)00004-0
  24. Karvonen, P. and O. Savolainen. 1993. Variation and inheritance of ribosomal DNA in Pinus sylvestris L. (Scots Pine). Heredity 71: 614-622. https://doi.org/10.1038/hdy.1993.186
  25. Karvonen, P., A. E. Szmidt and O. Savolaninen. 1994. Length variation in the internal transcribed spacers of ribosomal DNA in Picea abies and related species. Theoretical Applied Genetics 89: 967-974.
  26. Kim, Z. S., J. W. Hwang, S. W. Lee, C. Yang and P. G. Gorovoy. 2005. Genetic variation of Korean pine (Pinus koraiensis Siebb. et Zucc.) at allozyme and RAPD markers in Korea, China and Russia. Silvae Genet 54: 235-246.
  27. Kim, C. S., K. S. Jun, K. W. Kwon and J. H. Kim. 1979. Studies on the pollen source effects coming into some traits of Pinus rigida $^{\circ}{\phi}$ taeda. Research Report of the Institute of Forest Genetics 15: 3-20. (in Korean)
  28. Kim, K., S. S. Whang and R. S. Hill. 1999. Cuticle micromorphology of leaves of Pinus (Pinaceae) in east and south-east Asia. Botanical Journal of the Linnean Society 129: 55-74.
  29. Kwon, Y.-R., K.-O. Ryu, H.-S. Choi, H.-Y. Kwon and Y.-H. Ahn. 2007. Growth performance among 12 provenances of 30 yearold loblolly pine (Pinus taeda L.) in Wanju, southern part of Korea. Korean Journal of Breeding Society 39: 412-418. (in Korean)
  30. Lee, T. B. 1980. Illustrated Flora of Korea. Academy, Seoul. Pp. 136-142. (in Korean)
  31. Lexer, C., Z. Lai and L. H. Rieseberg. 2004. Candidate gene polymorphisms associated with salt tolerance in wild sunflower hybrids: implications for the origin of Helianthus paradoxus, a diploid hybrid species. New Phytologist 161: 225-233.
  32. Liston, A., W. A. Robinson and E. R. Alvarez-Buylla. 1999. Phylogenetics of Pinus (Pinaceae) based on nuclear ribosomal DNA internal transcribed spacer region sequences. Molecular Phylogenetics and Evolution 11: 95-109. https://doi.org/10.1006/mpev.1998.0550
  33. Ma, X. F., A. E. Szmidt and X. R. Wang. 2006. Genetic structure and evolutionary history of a diploid hybrid pine Pinus densata inferred from the nucleotide variation at seven gene loci. Molecular Biology and Evolution 23: 807-816. https://doi.org/10.1093/molbev/msj100
  34. Maggini, F., M. Frediani and M. T. Gelati. 2000. Neucleotide sequence of the internal transcribed spacers of ribosomal DNA in Picea abies Karst. DNA Sequence 11:87-89. https://doi.org/10.3109/10425170009033973
  35. Mallet, J. 2007. Hybrid speciation. Nature 446: 279-283. https://doi.org/10.1038/nature05706
  36. Markos, S. and B. G. Baldwin. 2002. Structure, molecular evolution, and phylogenetic utility of the 5' region of the external transcribed spacer of 18S-26S rDNA in Lessingia (Compostae, Astereae). Molecular Phylogenetic Evolution 23: 214-228. https://doi.org/10.1016/S1055-7903(02)00004-0
  37. Mirov, N. T. 1967. The genus Pinus. The Ronald Press Company. New York.
  38. Razafimandimbison, S. G., E. A. Kellogg and B. Bremer. 2004. Recent origin and phylogenetic utility of divergent ITS putative pseudogenes: a case study from Naucleeae (Rubiaceae). Systematic Biology 53: 177-192. https://doi.org/10.1080/10635150490423278
  39. Ren, G.-P., R. J. Abbott, Y.-F. Zhou, L.-R. Zhang, Y.-L. Peng and J.-Q. Liu. 2012. Genetic divergence, range expansion and possible homoploid hybrid speciation among pine species in Northeast China. Heredity 108: 552-562. https://doi.org/10.1038/hdy.2011.123
  40. Rieseberg, L. H., J. J. E. Baird and A. M. Desrochers. 1998. Patterns of mating in wild sunflower hybrid zones. Evolution 52: 713-726. https://doi.org/10.2307/2411266
  41. Rieseberg, L. H., M. A. Archer and R. K. Wayne. 1999. Transgressive segregation, adaptation and speciation. Heredity 83: 363-372. https://doi.org/10.1038/sj.hdy.6886170
  42. Rzedowski, J. 1993. Diversity and origins of the phanerogamic flora of Mexico. In Ramamoorthy, T. P., Beye R., Lot A. Fa J. (eds.). Biological diversity of Mexico: origins and distribution. Oxford University Press, New York. Pp. 129-144.
  43. Price, R. A., A. Liston and S. H. Strauss. 1989. Phylogeny and systematics of Pinus. In "Ecology and Biogeography of Pinus. D. M. Richardson, (ed.), Cambridge University Press, Cambridge. Pp. 49-68.
  44. Prince, R. A. 1989. The genera of Pinaceae in the southeastern United States. Journal of the Arnold Arboretum 70: 247-305. https://doi.org/10.5962/bhl.part.19788
  45. Stockey, R. A. and M. Nishida. 1986. Pinus harborensis sp. nov. and affinities of permineralized leaves from the Upper Cretaceous of Japan. Canadian Journal of Botany 64: 1856-1866. https://doi.org/10.1139/b86-246
  46. Sun, B. Y. 2007. Pinus. In The Genera of Vascular Plants of Korea. Park, C.W. (ed.). Academy Publishing Co., Seoul. Pp. 122-125.
  47. Sun, Y. J. 2004. Sin Kyu Hyun$^{\circ}C$s Research on Hybrid pine rigitaeda. The Korean Journal for the History of Sciences 27: 27-60. (in Korean)
  48. Swofford, D. I. 2003. PAUP*: Phylogenetic analysis using parsimony and other methods. ver. 4.0b10. Sinauer Associates, Sunderland, USA.
  49. Taylor, T. N. and E. L. Taylor. 1993. The biology and evolution of fossil plants. New Jersey: Prentice Hall.
  50. Wei, X.-X., X.-Q. Wang and D.-Y. Hong. 2003. Marked intrageneomic heterogeneity and geographical differentiation of nrDNA ITS in Larix potaninii (Pinaceae). Journal of Molecular Evolution 57: 623-635. https://doi.org/10.1007/s00239-003-2512-8
  51. Wendel, J. F., A. Schnabel and T. Seelanan. 1995. Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proceeding of National Academy of Science, USA 92: 280-284. https://doi.org/10.1073/pnas.92.1.280
  52. Whang, S. S., K. Kim and R. S. Hill. 2004. Cuticle micromorphology of leaves of Pinus (Pinaceae) from North America. Botanical Journal of the Linnean Society 144: 303-320. https://doi.org/10.1111/j.1095-8339.2003.00245.x
  53. Wolfe, A. D., Q.-Y. Xiang and S. R. Kephart. 1998. Diploid hybrid speciation in Penstemon (Scrophulariaceae). Proceeding of the National Academy of Sciences, USA 95: 5112-5115. https://doi.org/10.1073/pnas.95.9.5112
  54. Youn, Y., G. S. Jhun and M. H. Park. 1984. Growth performance of Hybrids among American Southern pines in Chunbuk area. Journal of Korean Forest Society 64: 47-51. (in Korean)