DOI QR코드

DOI QR Code

Direct Conversion of Cellulose into Polyols over Pt/CsxH3-xPW12O40

  • You, Su Jin (Division of Energy Systems Research and Department of Chemical Engineering, Ajou University) ;
  • Baek, In Gu (Division of Energy Systems Research and Department of Chemical Engineering, Ajou University) ;
  • Park, Eun Duck (Division of Energy Systems Research and Department of Chemical Engineering, Ajou University)
  • 투고 : 2013.02.14
  • 심사 : 2013.03.18
  • 발행 : 2013.03.31

초록

다른 분율의 Cs이 포함된 Pt/$Cs_xH_{3-x}PW_{12}O_{40}$ 촉매를 제조하여 셀룰로우스의 폴리올로의 수소화분해반응를 수행하였다. 촉매의 비표면적과 Pt의 분산도는 Pt/$Cs_xH_{3-x}PW_{12}O_{40}$ 촉매의 Cs 함량이 증가함에 따라 증가하였다. 그러나 Pt/$Cs_xH_{3-x}PW_{12}O_{40}$ 촉매의 Cs의 함량이 변함에도 불구하고 비슷한 폴리올 수득률을 보였다. Pt/$Cs_xH_{3-x}PW_{12}O_{40}$ 촉매의 반응 활성은 Ni/W/SBA-15와 두 가지의 복합촉매(Pt/AC+$H_3PW_{12}O_{40}$과 Pt/AC+$Cs_{3.0}PW_{12}O_{40}$)와 비슷하였다. 이 반응을 진행하는 동안 Pt/$Cs_xH_{3-x}PW_{12}O_{40}$ 촉매로부터 헤테로폴리 음이온이 침출되는 것을 확인하였다.

The hydrogenolysis of cellulose into polyols was examined over Pt/$Cs_xH_{3-x}PW_{12}O_{40}$ catalysts containing different Cs fractions. The surface area and Pt dispersion of Pt/$Cs_xH_{3-x}PW_{12}O_{40}$ catalysts were found to increase with Cs content. Similar polyol yields were obtained over Pt/$Cs_xH_{3-x}PW_{12}O_{40}$ catalysts irrespective of their Cs content. The catalytic activity of Pt/$Cs_xH_{3-x}PW_{12}O_{40}$ was comparable to that of Ni/W/SBA-15 and combined catalytic systems such as Pt/AC+$H_3PW_{12}O_{40}$ and Pt/AC + $Cs_{3.0}PW_{12}O_{40}$. Some polyanion species were found to leach from the Pt/$Cs_xH_{3-x}PW_{12}O_{40}$ catalyst during the course of the reaction.

키워드

참고문헌

  1. Huber, G. W., Iborra, S., and Corma, A., "Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering," Chem. Rev., 106, 4044-4098 (2006). https://doi.org/10.1021/cr068360d
  2. Rinaldi, R., and Schüth, F., "Design of Solid Catalysts for the Conversion of Biomass," Energy Environ. Sci., 2, 192-196 (2009).
  3. Cabiac, A., Guillon, E., Chambon, F., Pinel, C., Rataboul, F., and Essayem, N., "Cellulose Reactivity and Glycosidic Bond Cleavage in Aqueous Phase by Catalytic and Non Catalytic Transformations," Appl. Catal. A: Gen., 402, 1-10 (2011). https://doi.org/10.1016/j.apcata.2011.05.029
  4. Fukuoka, A., and Dhepe, P. L., "Catalytic Conversion of Cellulose into Sugar Alcohols," Angew. Chem.-Int. Edit., 45, 5161-5163 (2006). https://doi.org/10.1002/anie.200601921
  5. Kobayashi, H., Ito, Y., Komanoya, T., Hosaka, Y., Dhepe, P. L., Kasai, K., Hara, K., and Fukuoka, A., "Synthesis of Sugar Alcohols by Hydrolytic Hydrogenation of Cellulose over Supported Metal Catalysts," Green Chem., 13, 326-333 (2011). https://doi.org/10.1039/c0gc00666a
  6. Han, J. W., and Lee, H., "Direct Conversion of Cellulose into Sorbitol Using Dual-functionalized Catalysts in Neutral Aqueous Solution," Catal. Commun., 19, 115-118 (2012). https://doi.org/10.1016/j.catcom.2011.12.032
  7. Deng, W., Tan, X., Fang, W., Zhang, Q., and Wang, Y., "Conversion of Cellulose into Sorbitol over Carbon Nanotube-supported Ruthenium Catalyst," Catal. Lett., 133, 167-174 (2009). https://doi.org/10.1007/s10562-009-0136-3
  8. Wang, H., Zhu, L., Peng, S., Peng, F., Yu, H., and Yang, J., "High Efficient Conversion of Cellulose to Polyols with Ru/CNTs as catalyst," Renew. Energy, 37, 192-196 (2011).
  9. You, S. J., Baek, I. G., Kim, Y. T., Jeong, K.-E., Chae, H.-J., Kim, T.-W., Kim, C.-U., Jeong, S.-Y., Kim, T. J., Chung, Y.-M., Oh, S.-H., and Park, E. D., "Direct Conversion of Cellulose into Polyols or $H_2$ over Pt/Na(H)-ZSM-5," Korean J. Chem. Eng., 28, 744-750 (2011). https://doi.org/10.1007/s11814-011-0019-3
  10. Luo, C., Wang, S., and Liu, H., "Cellulose Conversion into Polyols Catalyzed by Reversibly Formed Acids and Supported Ruthenium Clusters in Hot Water," Angew. Chem.-Int. Edit., 46, 7636-7639 (2007). https://doi.org/10.1002/anie.200702661
  11. Ji, N., Zhang, T., Zheng, M., Wang, A., Wang, H., Wang, X., and Chen, J. G., "Direct Catalytic Conversion of Cellulose into Ethylene Glycol Using Nickel-promoted Tungsten Carbide Catalysts," Angew. Chem.-Int. Edit., 47, 8510-8513 (2008). https://doi.org/10.1002/anie.200803233
  12. Zheng, M.-Y., Wang, A.-Q., Ji, N., Pang, J.-F., Wang, X.-D., and Zhang, T., "Transition Metal-tungsten Bimetallic Catalysts for the Conversion of Cellulose into Ethylene Glycol," Chem-SusChem, 3, 63-66 (2010).
  13. Baek, I. G., You, S. J., and Park, E. D., "Direct conversion of cellulose into polyols over $Ni/W/SiO_2-Al_2O_3$," Bioresour. Technol., 114, 684-690 (2012). https://doi.org/10.1016/j.biortech.2012.03.059
  14. Palkovits, R., Tajvidi, K., Ruppert, A. M., and Procelewska, J., "Heteropoly Acids as Efficient Acid Catalysts in the One-step Conversion of Cellulose to Sugar Alcohols," Chem. Commun., 47, 576-578 (2011). https://doi.org/10.1039/c0cc02263b
  15. Geboers, J., Van de Vyver, S., Carpentier, K., de Blochouse, K., Jacobs, P., and Sels, B., "Efficient Catalytic Conversion of Concentrated Cellulose Feeds to Hexitols with Heteropoly Acids and Ru on Carbon," Chem. Commun., 46, 3577-3579 (2010). https://doi.org/10.1039/c001096k
  16. Geboers, J., Van de Vyver, S., Carpentier, K., Jacobs, P., and Sels, B., "Hydrolytic Hydrogenation of Cellulose with Hydrotreated Caesium Salts of Heteropoly Acids and Ru/C," Green Chem., 13, 2167-2174 (2011). https://doi.org/10.1039/c1gc15350a
  17. Palkovits, R., Tajvidi, K., Procelewska, J., Rinaldi, R., and Ruppert, A., "Hydrogenolysis of Cellulose Combining Mineral Acids and Hydrogenation Catalysts," Green Chem., 12, 972 (2010). https://doi.org/10.1039/c000075b
  18. Geboers, J., Van de Vyver, S., Carpentier, K., Jacobs, P., and Sels, B., "Efficient Hydrolytic Hydrogenation of Cellulose in the Presence of Ru-loaded Zeolites and Trace Amounts of Mineral Acid," Catal. Commun., 47, 5590-5592 (2011).
  19. Okuhara, P., Mizuno, N., and Misono, M., "Catalysis by Heteropoly Compounds-recent Developments," Appl. Catal. A: Gen., 222, 63-77 (2001). https://doi.org/10.1016/S0926-860X(01)00830-4
  20. Okuhara, T., "Microporous Heteropoly Compounds and their Shape Selective Catalysis," Appl. Catal. A: Gen., 256, 213- 224 (2003). https://doi.org/10.1016/S0926-860X(03)00401-0
  21. Tian, J., Fang, C., Cheng, M., and Wang, X., "Hydrolysis of Cellulose over $Cs_xH_{3-x}PW_{12}O_{40}$ (X = 1-3) Heteropoly Acid catalysts," Chem. Eng. Technol., 34, 482-486 (2011). https://doi.org/10.1002/ceat.201000409
  22. Okuhara, T., Watanabe, H., Nishimura, T., Inumaru, K., and Misono, M., "Microstructure of Cesium Hydrogen Salts of 12-tungstophosphoric Acid Relevant to Novel Acid Catalysis," Chem. Mater., 12, 2230-2238 (2000). https://doi.org/10.1021/cm9907561
  23. Meynen, V., Cool, P., and Vansant, E. F., "Verified Syntheses of Mesoporous Materials," Micro. Mesop. Mater., 125, 170-223 (2009). https://doi.org/10.1016/j.micromeso.2009.03.046
  24. You, S. J., Kim, S. B., Kim, Y. T., and Park, E. D., "Conversion of Cellulose into Polyols over Noble Metal Vatalysts Supported on Activated Carbon," Clean Tech., 16, 19-25 (2010).
  25. Na, K., Iizaki, T., Okuhara, T., and Misono, M., "Molecular Design of Solid Acid Catalysts. Isomerization of n-butane Catalyzed by Acidic Cesium Salts of 12-tungstophosphoric Acid Combined with Platinum " J. Mol. Catal. A: Chem., 115, 449-455 (1997). https://doi.org/10.1016/S1381-1169(96)00350-0
  26. Xlan-e, C., Daichun, D., Jianping, N., Youming, J., Jing, Z., and Yixiang, Q., "Enthalpies of formation and DSC and TG Results of Heteropoly Acids Containing Tungsten and Molybdenum," Thermochim. Acta., 292, 45-50 (1997). https://doi.org/10.1016/S0040-6031(96)03094-8
  27. Essayem, N., Coudurier, G., Fournier, M., and Vedrine, J. C., "Acidic and catalytic properties of $Cs_xH_{3-x}PW_{l2}O_{40}$ Heteropolyacid Compounds," Catal. Lett., 34, 223-225 (1995). https://doi.org/10.1007/BF00808337
  28. Chambon, F., Rataboul, F., Pinel, C., Cabiac, A., Guillon, E., and Essayem, N., "Cellulose Hydrothermal Conversion Promoted by Heterogeneous Bronsted and Lewis Acids: Remarkable Efficiency of Solid Lewis Acids to Produce Lactic Acid," Appl. Catal. B: Environ., 105, 171-181 (2011). https://doi.org/10.1016/j.apcatb.2011.04.009

피인용 문헌

  1. Optimization Study of Biomass Hydrogenation to Ethylene Glycol Using Response Surface Methodology vol.8, pp.5, 2013, https://doi.org/10.3390/pr8050588