DOI QR코드

DOI QR Code

내성천 집수매거의 수질 확보를 위한 충적층 지하수의 수질 특성 평가

Hydrogeochemical Assessment of Groundwater Quality Security in the Collection Conduit Area, Naeseong-Cheon

  • 신경희 (K-water연구원 수변지하수연구단) ;
  • 차은지 (K-water연구원 수변지하수연구단) ;
  • 손영철 (K-water연구원 수변지하수연구단) ;
  • 이승현 (K-water연구원 수변지하수연구단) ;
  • 김규범 (K-water연구원 수변지하수연구단)
  • 투고 : 2012.09.24
  • 심사 : 2013.03.13
  • 발행 : 2013.03.31

초록

소규모 지방상수도 수원인 중소하천에 얕게 매설된 집수매거에서 $Fe^{2+}$$Mn^{2+}$의 농도가 수처리에 부적합할 정도로 높게 나타나 정수에 어려움을 겪기도 한다. 연구지역인 예천군 개포면 신음리의 내성천에서는 집수매거에 의하여 생활용수를 취수하고 있으나, $Fe^{2+}$$Mn^{2+}$의 농도가 높아 수원지의 이동이 필요한 실정으로서, 본 연구에서는 하천 제방 인근에서 중앙으로 집수매거를 이동할 경우 농도의 저감 정도를 평가하고자 하였다. 연구지역 하천 부지내에 총 9개의 얕은 우물(3 m 심도 4개 공 및 6 m 심도 5개 공)을 설치하여, 5시간의 양수를 거치면서 지하수의 이화학 특성 변화 및 $Fe^{2+}$$Mn^{2+}$의 농도 변화를 분석하였다. 양수가 진행됨에 따라 천층 지하수와 공기가 유입되어 산화 조건을 형성하는 것으로 보이며, 양수정에서는 하천수의 유입 혼합으로 $Ca^{2+}$$Cl^-$이 증가하는 경향을 보였다. 하천 중앙부의 지하수가 제방측보다 $Fe^{2+}$$Mn^{2+}$의 농도가 상대적으로 낮고 양수에 의한 농도 저감 효과도 잘 나타나 집수매거를 하천 중앙 쪽으로 이동 설치하는 것이 유리할 것으로 판단되었다. 향후 중소하천에 집수매거를 설치하는 경우 현장 실험을 통한 최적의 원수 수질 확보 지점을 도출한다면 정수 처리 비용 등을 절감할 수 있을 것이다.

It is sometimes necessary to change the location of the collection conduit, which is constructed in shallow sediments in a stream, if the concentrations of $Fe^{2+}$ and $Mn^{2+}$ become too high for water treatment. A total of nine wells, including four shallow wells with a depth of 3 m and five deeper wells with a depth of 6 m, were installed in the study area at Naeseong-cheon in Yecheon-gun. The change in hydrogeochemical features of groundwater and the concentrations of $Fe^{2+}$ and $Mn^{2+}$ were examined at the wells during 5 hours of pumping. As pumping was performed, the velocity of groundwater flow was increased around the pumping well and aeration conditions were developed to precipitate iron and manganese oxides in an oxidizing environment. In addition, the concentrations of $Ca^{2+}$ and $Cl^-$ at the pumping well were increased following the mixing of surface water and groundwater. It is suggested that the center region of the stream would be more suitable for a new collection conduit, considering the concentrations of $Fe^{2+}$ and $Mn^{2+}$ in groundwater and their reducing effect during pumping. The installation of a collection conduit based on field tests performed to ensure water quality enables a reduction in the construction and management costs at water treatment facilities.

키워드

참고문헌

  1. Ahmad, M., 2012, Iron and Manganese Removal from Groundwater; Geochemical Modeling of the Vyredox Method, Department of Geosciences, University of Oslo, Norway, 101p.
  2. Appelo, C. A. J., Drijver, B., Hekkenberg, R., and de Jonge, M., 1999, Modeling in situ iron removal from groundwater, Ground Water, 37(6), 811-817. https://doi.org/10.1111/j.1745-6584.1999.tb01179.x
  3. Araby, El. R., Hawash, S., and Diwani, El. G., 2009, Treatment of iron and manganese in simulated groundwater via ozone technology, Desalination, 249, 1345-1349. https://doi.org/10.1016/j.desal.2009.05.006
  4. Bourg, A., Darmendrail, D., and Ricour, J., 1989, Geochemical filtration of riverbank and migration of heavy metals between the Deule River and the Ansereuilles Alluvion-Chalk aquifer (Nord, France), Geoderma, 44, 229-244. https://doi.org/10.1016/0016-7061(89)90032-3
  5. Bourg, A., Kedziorek, M. A. M., and Darmendrail D., 2002, Organic matter as the driving force in the solubilization of Fe and Mn during riverbank filtration, In: Riverbank filtration: Understanding contaminant biogeochemistry and pathogen removal, Kluwer Academic Publishers, the Netherlands, 43-54.
  6. Braester, C. and Martinell, R., 1988, The Vyredox and Nitredox methods of in-situ treatment of groundwater, Water Science Technology, 20(3), 149-163.
  7. Choi, B. K., Koh, D. C., Ha, K., and Cheon, S. H., 2007, Effect of redox processes and solubility equilibria on the behavior of dissolved iron and manganese in groundwater from a riverine alluvial aquifer, Economic and Environmental Geology, 40(1), 29-45 (in Korean with English abstract).
  8. Cornell, R. M. and Schwertmann, U., 1996, The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses, Wiley-VCH, Weinheim, Germany, 604p.
  9. Davies, S. H. R. and Morgan, J. J., 1989, Manganese(II) oxidation kinetics on metal oxide surfaces, Journal of Colloids and Interface Science, 129(1), 63-77. https://doi.org/10.1016/0021-9797(89)90416-5
  10. Diem, D. and Stumm, W., 1984, Is dissolved $Mn^{2+}$ being oxidized by $O_2$ in absence of Mn-bacteria or surface catalysts? Geochimica et Cosmochimica Acta, 48(7), 1571-1573. https://doi.org/10.1016/0016-7037(84)90413-7
  11. Ervin, A. L. and Bauldin, L., 1993, High Rate Filtration Pilot Testing for Iron Removal, Presentation for AWWA meeting, Charleston, South Carolina, 15p.
  12. Filtronics, 1993, Iron and Manganese Filtration Systems: A Technical Discussion, Anaheim, CA, 13p.
  13. Gallard, H. U. and von Gunten, U., 2002, Chlorination of natural organic matter: kinetics of chlorination and of THM formation, Water Research, 36, 65-74. https://doi.org/10.1016/S0043-1354(01)00187-7
  14. Gapyung-Gun, 1999, Report on the Feasibility Study for River Bank Filtration and the Design of Integrated Waterworks. 781p (in Korean).
  15. Halem, V. D., Moed, H. D., Verberk, J. Q. J. C., Amy, G. L., and van Dijk, J. C., 2011, Cation exchange during subsurface iron removal, Water Research, 46, 307-315.
  16. Halem, V. D., Vet, D. W., Verberk, J. Q. J. C., Amy, G. L., and van Dijk, J. C., 2010, Characterization of accumulated precipitates during subsurface iron removal, Applied Geochemistry, 26, 116-124.
  17. Hallberg, R. O. and Martinell, R., 1976, Vyredox - in situ purification of ground water, Ground Water, 14(2), 88-93. https://doi.org/10.1111/j.1745-6584.1976.tb03638.x
  18. Han, J. S., 1998, Groundwater Environment and Pollution, Seoul, 528-531 (in Korean).
  19. Hem, J. D., 1989, Study and Interpretation of the Chemical Characteristics of Natural Water, U.S. Geological Survey Water-Supply Paper 2254, Department of The Interior, 263p.
  20. Hounslow, A. W., 1995, Water Quality Data - Analysis and Interpretation, CRC Press LLC., 85p.
  21. Hyun, S. G., Woo, N. C., Shin, W., and Hamm, S. Y., 2006, Characteristics of groundwater quality in a riverbank filtration area, Economic and Environmental Geology, 39(2), 151-162 (in Korean with English abstract).
  22. Jaudon, P., Massini, J., Galea, J., and Rey, J., 1989. Groundwater pollution by manganese. Manganese speciation: Application to the selection and discussion of the in situ groundwater treatment, The Science of the Total Environment, 84, 169-183. https://doi.org/10.1016/0048-9697(89)90381-1
  23. Kedziorek, M. A. M. and Bourg, A., 2009, Electron trapping capacity of dissolved oxygen and nitrate to evaluate Mn and Fe reductive dissolution in alluvial aquifers during riverbank filtration, Journal of Hydrology, 365, 74-78. https://doi.org/10.1016/j.jhydrol.2008.11.020
  24. Kim, G. B., Kim, B. W., Shin, S. H., and Park, J. H, 2009, Iron and manganese removal through well development at river bank filtration site, The Journal of Engineering Geology, 19(3), 385-396 (in Korean with English abstract).
  25. Korea Water Resources Corporation, 2011, Development of In-situ Treatment Technology for Iron and Manganese in Groundwater, Daejeon, 135p (in Korean).
  26. Lee, M. J., Park, J. H., and Kim, G. B., 2012, In situ ironmanganese removal by the oxygenized water injection at the river bank filtration site, Journal of the Geological Society of Korea, 48(6), 503-519 (in Korean with English abstract).
  27. Lovely, D. R., 1987, Organic matter mineralization with the reduction of ferric iron: A review, Journal of Geomicrobiology, 5, 375-399. https://doi.org/10.1080/01490458709385975
  28. Lovely, D. R. and Phillips, E. J. P., 1988, Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron and manganese, Applied and Environmental Microbiology, 54(6), 1472-1480.
  29. Maogong, F., 1988, The applications of Vyredox method regarding iron removal from ground water in China, Ground Water 26(5), 647-648. https://doi.org/10.1111/j.1745-6584.1988.tb00799.x
  30. Mettler, S., Abdelmoula, M., Hoehn, E., Schoenenberger, R., Weidler, P., and von Gunten, U., 2001, Characterization of iron and manganese precipitates from an in situ ground water treatment plant, Ground Water, 39(6), 921-930. https://doi.org/10.1111/j.1745-6584.2001.tb02480.x
  31. Ministry of Education, Science and Technology, 2011, Establishment and Utilization of Sustainable Groundwater Development System, 21st Century Frontier R&D Program, 1054p (in Korean).
  32. Ministry of Environment, 2011, Statistics in Waterworks 2010 - Abstracts, 16p (in Korean).
  33. Ministry of Science and Technology, 2007, Development of Water Supply System Using Sustainable Aquifer Management, 21st Century Frontier R&D Program, 1373p (in Korean).
  34. Mouchet, P., 1992, From conventional to biological removal of iron and manganese in France, Journal of American Water Works Association, 84(4), 158-166,
  35. Rott, U. and Lamberth, B., 1993, Groundwater cleanup by in situ treatment of nitrate, iron and manganese, Water Supply, 11, 143-156.
  36. Seppanen, H. T., 1992, Experiences of biological iron and manganese removal in Finland, Institution of Water and Environmental Management Journal, 6(3), 333-341. https://doi.org/10.1111/j.1747-6593.1992.tb00757.x
  37. Sharma, S. K., Kappelhof, J., Groenendijk, M., and Schippers, J. C., 2001, Comparison of physicochemical iron removal mechanisms in filters, Journal of Water Supply: Research and Technology - Aqua, 50(4), 187-198.
  38. Stumm, W. and Morgan, J. J., 1996, Aquatic Chemistry, New York, John Wiley & Sons Inc., 1040p.
  39. Sun, C. O., Woo, D. S., and Nam, S. H, 1997, Removal characteristics of iron, manganese and organics in ground water using ozonation, Korean Journal of Sanitation, 12(2), 43-49 (in Korean with English abstract).
  40. Teutsch, N., Gunten, U. V., Porcelli, D., Cirpka, O. A., and Halliday, A. N., 2005, Adsorption as a cause for iron isotope fractionation in reduced groundwater. Geochimica et Cosmochimica Acta, 69(17), 4175-4185. https://doi.org/10.1016/j.gca.2005.04.007
  41. Tredoux, G., Israel, S., and Cave, L, C., 2004. The Feasibility of in situ groundwater remediation as robust low-cost water treatment option, Water Research Commission Report No. 1325/1/04.
  42. Yun, S. K., Cha, M. S., Kim, J. J., and Lee, J. D., 1988, Geologic Map of Yecheon (1:50,000), Korea Institute of Energy and Resources, 12p (in Korean).

피인용 문헌

  1. Classification of Groundwater Level Variation Types Near the Excavated Area of the Temporary Gulpocheon Discharge Channel vol.24, pp.4, 2014, https://doi.org/10.9720/kseg.2014.4.631
  2. Analysis of Microbial Communities in Animal Carcass Disposal Soils vol.35, pp.7, 2013, https://doi.org/10.4491/KSEE.2013.35.7.503