DOI QR코드

DOI QR Code

Adsorption of Aromatic Compounds on a QCM System Coated with Polymer Films

고분자 필름이 코팅된 QCM 시스템에 의한 방향족 화합물의 흡착

  • Hwang, Min-Jin (Center for Functional Nano Fine Chemicals and School of Applied Chemical Engineering, Chonnam National University) ;
  • Shim, Wang-Geun (Center for Functional Nano Fine Chemicals and School of Applied Chemical Engineering, Chonnam National University) ;
  • Moon, Hee (Center for Functional Nano Fine Chemicals and School of Applied Chemical Engineering, Chonnam National University)
  • 황민진 (전남대학교 응용화학공학부) ;
  • 심왕근 (전남대학교 응용화학공학부) ;
  • 문희 (전남대학교 응용화학공학부)
  • Received : 2012.09.27
  • Accepted : 2013.01.22
  • Published : 2013.04.01

Abstract

A quartz crystal microbalance (QCM) system coated with poly (isobutylene), polystyrene, and poly (methyl methacrylate) has been prepared to measure the adsorption amounts of benzene, toluene, and p-xylene at very low pressures. The resonant frequency shift of the QCM system is proportional to the increase in pressure in all experiments. The Henry's constants for all adsorbates on the polymer films are obtained from experimental data and compared with the minimum adsorption potential energies between adsorbates and the polymer films. In general, there is an explicit correlation between adsorption amount and the minimum adsorption potential energy.

Poly(isobutylene), polystyrene 및 poly(methyl methacrylate)로 코팅된 quartz crystal microbalance(QCM) 시스템을 구성하여, 매우 낮은 압력에서 benzene, toluene, p-xylene의 흡착량을 측정하였다. 모든 흡착실험에서 QCM 시스템의 공진 주파수 변화는 압력의 증가에 비례하였다. 실험결과로부터 각각의 고분자 필름에 대한 흡착물질의 Henry 상수를 구하였으며 고분자 필름과 흡착물질 사이의 최소 흡착 포텐셜 에너지와 비교하였다. 전체적으로 흡착량과 최소 흡착 포텐셜 에너지는 명백한 상관관계가 있었다.

Keywords

References

  1. Andrew, J., Grall., Edward, T. and Richard, D., "High-Speed Analysis of Complex Indoor VOC Mixtures by Vacuum-Outlet GC with Air Carrier Gas and Programmable Retention," Environ. Sci. Technol., 35, 163-169(2001). https://doi.org/10.1021/es001255f
  2. Chen, Y. Q. and Lu, C. J., "Surface Modification on Silver Nanoparticles for Enhancing Vapor Selectivity of Localized Surface Plasmon Resonance Sensors," Sensor. Actuat B-Chem., 135, 492-498(2009). https://doi.org/10.1016/j.snb.2008.09.030
  3. Zhang, T. Y., Quan, C. F. and Tong, P., "Linear Electro-Elastic Analysis of a Cavity or a Crack in Piezoelectric Material," Int. J. Solids Struct., 17, 2121-2149(1998).
  4. Michael, D. and Daniel, A., "In Situ Interfacial Mass Detection with Piezoelectric Transducers," Science., 249, 1000-1007(1990). https://doi.org/10.1126/science.249.4972.1000
  5. Amico, A. and Verona, E., "Saw Sensors," Sensor. Actuat B-Chem., 17, 55-56(1989). https://doi.org/10.1016/0250-6874(89)80064-2
  6. Christine, G. F. and Alder, J. F., "Surface Acoustic Wave Sensors for Atmospheric Gas Monitoring a Review," Analyst., 114, 997-1004(1989). https://doi.org/10.1039/an9891400997
  7. Abbas, M. N., Moustafa, G. A., Mitrovics, J. and Gopel. W., "Multicomponent Gas Analysis of a Mixture of Chloroform, Octane and Toluene using a Piezoelectric Quartz Crystal Sensor Array," Anal. Chim. Acta., 393, 67-79(1999). https://doi.org/10.1016/S0003-2670(99)00338-4
  8. Rittersma, Z. M., "Recent Achievements in Miniaturized Humidity Sensors-a Review of Transduction Techniques," Sensor. Actuat A-Phys., 96, 196-210(2002). https://doi.org/10.1016/S0924-4247(01)00788-9
  9. Meiping, T., Jiali, D., Yun, S. and Pingting, Z., "Influence of Biofilm on the Transport of Fullerene $(C_{60})$ Nanoparticles in Porous Media," Water Res., 44, 1094-1103(2010). https://doi.org/10.1016/j.watres.2009.09.040
  10. Park, J. I. and Yu, I. S., "$N_2$ Adsroption study on Quartz, Silver, and Carbon Nanotube by Inductive Pulse Quartz Crystal Microbalance," J. App. Phys., 101, 053521(2007). https://doi.org/10.1063/1.2437578
  11. Chen, H., Su, X., Neoh, K. G. and Choe, W. S., "QCM-D analysis of Bindin Mechanism of Phage Particles Displaying a Constrained Heptapeptide with Specific Affinity to $SiO_2$ and $TiO_2$," Anal. Chem., 78, 4872-4879(2006). https://doi.org/10.1021/ac0603025
  12. Lin, T. Y., Hu, C. H. and Chou, T. C., "Determination of Albumin Concentration by MIP-QCM Sensor," Biosens. Bioelectron., 20, 75-81(2004). https://doi.org/10.1016/j.bios.2004.01.028
  13. Peter, A., Lieverzeit., Konstantin, H., Adeel, A., Franz, L. and Dickert., "Polymers Imprinted with PAH Mixtures-Comparing Fluorescence and QCM Sensors," Anal. Bioanal. Chem., 392, 1405-1410(2008). https://doi.org/10.1007/s00216-008-2413-1
  14. Hwang, M. J., Shim, W. G., Yang, C. Y. and Moom, H., "Preparation of Molecularly Imprinted Polymers for the Detection of Aromatic Hydrocarbons," J. Nanosci. Nanotechnol., 11, 7206-7209 (2011). https://doi.org/10.1166/jnn.2011.4812
  15. Yang, C. Y., Hwang, M. J., Ryu, D. W., Park, J. H., Ryu, M. S. and Moon, H., "A Quartz Crystal Microbalance-Based Sensor System Coatd with Functional Polymers for $SO_2$ and $NO_2$ Detection," J. Nanosci. Anotechnol., 11, 7189-7192(2011). https://doi.org/10.1166/jnn.2011.4790
  16. Mirmohseni, A. and Hassanzadeh, V., "Application of Polymer- Coated Quartz Crystal Microbalance (QCM) as a Sensor for BTEX Compounds Vapors," J. Appl. Polym. Sci., 79, 1062-1066(2001). https://doi.org/10.1002/1097-4628(20010207)79:6<1062::AID-APP90>3.0.CO;2-V
  17. Sauerbrey, G., "Verwendun von Schwingquarzen zur Wagung dunner Schichten und zur Mikrowagung," Z. Phys. Chem., 155, 206-222(1959).
  18. Rocklein, M. N. and George, S. M., "Temperature-Induced Apparent Mass changes observed during Quartz Crystal Microbalance Measurements of Atomic Layer Deposition," Anal. Chem., 75, 4975-4982(2003). https://doi.org/10.1021/ac030141u
  19. Crank, J., The Mathematics of Diffusion, 2nd ed., Clarendon Press, Oxford(1975).
  20. Reinhard, M., Paul, J. and Valentin, B. F., "Dynamic Surface and Interfacial Tension of Surfactant and Polymer Solutions," Adv. Colloid. Interfac., 49, 249-302(1994). https://doi.org/10.1016/0001-8686(94)80017-0
  21. Duong, D. D., Adsorption analysis: Equilibria and kinetics., Imperial College Press(1998).
  22. Kim, S. C. and Shim, W. G., "Properties and Performance of Pd Based Catalysts for Catalytic Oxidation of Volatile Organic Compounds," Appl. Catal. B: Environ., 92, 429-436(2009). https://doi.org/10.1016/j.apcatb.2009.09.001