References
- N. T. J. Bailey, The Mathematical Theory of Infectious Diseases, 2nd ed., Hafner, New York, 1975.
- E. Beretta, T. Hara, W. Ma, and Y. Takeuchi, Convergence results in SIR epidemic models with varying population sizes, J. Appl. Nonlinear Anal. 28 (1997), 1909-1921. https://doi.org/10.1016/S0362-546X(96)00035-1
- F. Brauer and C. Castillo-Charvez, Mathematical Models in Population Biology and Epidemiology, Springer- Verlag, New York, 2001.
- W. H. Herbert, The mathematics of infectious diseases, SIAM Rev. 42 (2000), 599-653. https://doi.org/10.1137/S0036144500371907
- W. O. Kermack and A. G. Mckendrick, Contribution to the mathematical theory of epidemics, Proc. Roy. Soc. London Ser. A 115, (1927), 700-721. https://doi.org/10.1098/rspa.1927.0118
- W. Ma, M. Song, and Y. Takeuchi, Global stability of an SIR epidemic model with time delay, Appl. Math. Lett. 17 (2004), 1141-1145. https://doi.org/10.1016/j.aml.2003.11.005
- G. Schneckenreither, N. Popper, G. Zauner, and F. Breitenecker, Modelling SIR-type epidemics by ODEs, PDEs, difference equations and cellular automata - A comparative study, Simulation Modelling Practice and Theory, 16 (2008), 1014-1023. https://doi.org/10.1016/j.simpat.2008.05.015
- Z. Teng and Z. Zhang, Global behavior and permanence of an SIRS epidemic model with time delays, J. Nonlinear Anal. 9 (2008), 1409-1424. https://doi.org/10.1016/j.nonrwa.2007.03.010
- S. Ruan and W. Wang, Dynamical behavior of an epidemic model with a nonlinear incidence rate, J. Differential Equations 188 (2003), 135-163. https://doi.org/10.1016/S0022-0396(02)00089-X
- G. Zaman, K. H. Kang, and I. H. Jung, Stability analysis and optimal vaccination of an SIR epidemic model, BioSystem 93 (2008), 240-249. https://doi.org/10.1016/j.biosystems.2008.05.004
- Y. Jin, W. Wang, and S. Xiao, An SIRS model with a nonlinear incidence rate, J. Chaos, Solitons and Fractals 34 (2007), 1482-1497. https://doi.org/10.1016/j.chaos.2006.04.022
- P. van den Driessche and J. Watmough, A simple SIS epidemic model with a backward bifurcation, J. Math. Biol. 40 (2000), 525-540. https://doi.org/10.1007/s002850000032