References
- G. D. Anderson, M. K. Vamanamurthy, and M. Vuorinen, Generalized convexity and inequalities, J. Math. Anal. Appl. 335 (2007), no. 2, 1294-1308. https://doi.org/10.1016/j.jmaa.2007.02.016
- J. S. Aujla and F. C. Silva, Weak majorization inequalities and convex functions, Linear Algebra Appl. 369 (2003), 217-233. https://doi.org/10.1016/S0024-3795(02)00720-6
- Y. M. Chu and Y.-P. Lv, The Schur harmonic convexity of the Hamy symmetric function and its applications, J. Inequal. Appl. 2009 (2009), Art. ID 838529, 10 pages.
- Y. M. Chu and X. M. Zhang, Necessary and sufficient conditions such that extended mean values are Schur-convex or Schur-concave, J. Math. Kyoto Univ. 48 (2008), no. 1, 229-238. https://doi.org/10.1215/kjm/1250280982
- Y. M. Chu, X. M. Zhang, and G.-D. Wang, The Schur geometrical convexity of the extended mean values, J. Convex Anal. 15 (2008), no. 4, 707-718.
- Y. M. Chu and W. F. Xia, Solution of an open problem for Schur convexity or concavity of the Gini mean values, Sci. China Ser. A 52 (2009), no. 10, 2099-2106. https://doi.org/10.1007/s11425-009-0116-5
- G. M. Constantine, Schur convex functions on the spectra of graphs, Discrete Math. 45 (1983), no. 2-3, 181-188. https://doi.org/10.1016/0012-365X(83)90034-1
- P. Czinder and Zs. Pales, A general Minkowski-type inequality for two variable Gini means, Publ. Math. Debrecen 57 (2000), no. 1-2, 203-216.
- P. Czinder and Zs. Pales, Local monotonicity properties of two-variable Gini means and the comparison theorem revisited, J. Math. Anal. Appl. 301 (2005), no. 2, 427-438. https://doi.org/10.1016/j.jmaa.2004.08.006
- Z. Daroczy and L. Losonczi, Uber den Vergleich von Mittelwerten, Publ. Math. Debrecen 17 (1970), 289-297.
- D. Farnsworth and R. Orr, Gini means, Amer. Math. Monthly 93 (1986), no. 8, 603-607. https://doi.org/10.2307/2322316
- A. Forcina and A. Giovagnoli, Homogeneity indices and Schur-convex functions, Statistica 42 (1982), no. 4, 529-542.
- C. Gini, Diuna formula comprensiva delle media, Metron 13 (1938), 3-22.
- Ch. Gu and H. N. Shi, Schur-convexity and Schur-geometric convexity of Lehmer means, Math. Prac. Theory 39 (2009), no. 12, 183-188.
- G. H. Hardy, J. E. Littlewood, and G. Polya, Some simple inequalities satisfied by convex functions, Messenger Math. 58 (1929), 145-152.
- F. K. Hwang and U. G. Rothblum, Partition-optimization with Schur convex sum objective functions, SIAM J. Discrete Math. 18 (2004), no. 3, 512-524. https://doi.org/10.1137/S0895480198347167
- F. K. Hwang, U. G. Rothblum, and L. Shepp, Monotone optimal multipartitions using Schur convexity with respect to partial orders, SIAM J. Discrete Math. 6 (1993), no. 4, 533-547. https://doi.org/10.1137/0406042
- D.-M. Li, Ch. Gu, and H.-N. Shi, Schur convexity of the power-type generalization of Heronian mean, Math. Prac. Theory 36 (2006), no. 9, 387-390.
- D.-M. Li and H.-N. Shi, Schur convexity and Schur-geometrically concavity of generalized exponent mean, J. Math. Inequal. 3 (2009), no. 2, 217-225.
- Zh. Liu, Minkowski's inequality for extended mean values, Proceedings of the Second ISAAC Congress, Vol. 1 (Fukuoka, 1999), 585-592, Int. Soc. Anal. Appl. Comput. 7, Kluwer Acad. Publ., Dordrecht, 2000.
- L. Losonczi, Inequalities for integral mean values, J. Math. Anal. Appl. 61 (1977), no. 3, 586-606. https://doi.org/10.1016/0022-247X(77)90164-0
- A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Applications, New York, Academic Press, 1979.
- M. Merkle, Convexity, Schur-convexity and bounds for the gamma function involving the digamma function, Rocky Mountain J. Math. 28 (1998), no. 3, 1053-1066. https://doi.org/10.1216/rmjm/1181071755
- C. P. Niculescu, Convexity according to the geometric mean, Math. Inequal. Appl. 3 (2000), no. 2, 155-167.
- E. Neuman and J. Sandor, Inequalities involving Stolarsky and Gini means, Math. Pannon. 14 (2003), no. 1, 29-44.
- E. Neuman and Zs. Pales, On comparison of Stolarsky and Gini means, J. Math. Anal. Appl. 278 (2003), no. 2, 274-284. https://doi.org/10.1016/S0022-247X(02)00319-0
- Zs. Pales, Comparison of two variable homogeneous means, General inequalities, 6 (Oberwolfach, 1990), 59-70, Internat. Ser. Numer. Math., 103, Birkhauser, Basel, 1992.
- F. Qi, A note on Schur-convexity of extended mean values, Rocky Mountain J. Math. 35 (2005), no. 5, 1787-1793. https://doi.org/10.1216/rmjm/1181069663
- F. Qi, J. Sandor, and S. S. Dragomir, Notes on the Schur-convexity of the extended mean values, Taiwanese J. Math. 9 (2005), no. 3, 411-420.
- J. Sandor, A note on the Gini means, Gen. Math. 12 (2004), no. 4, 17-21.
- J. Sandor, The Schur-convexity of Stolarsky and Gini means, Banach J. Math. Anal. 1 (2007), no. 2, 212-215. https://doi.org/10.15352/bjma/1240336218
- M. Shaked, J. G. Shanthikumar, and Y. L. Tong, Parametric Schur convexity and arrangement monotonicity properties of partial sums, J. Multivariate Anal. 53 (1995), no. 2, 293-310. https://doi.org/10.1006/jmva.1995.1038
- H. N. Shi, S. H. Wu, and F. Qi, An alternative note on the Schur-convexity of the extended mean values, Math. Inequal. Appl. 9 (2006), no. 2, 219-224.
- H.-N. Shi, Y.-M. Jiang, and W.-D. Jiang, Schur-convexity and Schur-geometrically concavity of Gini means, Comput. Math. Appl. 57 (2009), no. 2, 266-274. https://doi.org/10.1016/j.camwa.2008.11.001
- C. Stepniak, Stochastic ordering and Schur-convex functions in comparison of linear experiments, Metrika 36 (1989), no. 5, 291-298. https://doi.org/10.1007/BF02614102
- S. Toader and G. Toader, Complementaries of Greek means with respect to Gini means, Int. J. Appl. Math. Stat. 11 (2007), no. 7, 187-192.
- B.-Y. Wang, Foundations of Majorization Inequalities, Beijing Normal Univ. Press, Beijing, China, 1990.
- Z.-H. Wang, The necessary and sufficient condition for S-convexity and S-geometrically convexity of Gini mean, J. Beijing Ins. Edu. (Natural Science) 2 (2007), no. 5, 1-3.
- Z.-H. Wang and X.-M. Zhang, Necessary and sufficient conditions for Schur convexity and Schur-geometrically convexity of Gini means, Communications of inequalities researching 14 (2007), no. 2, 193-197.
- W.-F. Xia, The Schur harmonic convexity of Lehmer means, Int. Math. Forum 4 (2009), no. 41, 2009-2015.
- W.-F. Xia and Y.-M. Chu, Schur-convexity for a class of symmetric functions and its applications, J. Inequal. Appl. 2009 (2009), Art. ID 493759, 15 pages.
- Zh.-H. Yang, Simple discriminances of convexity of homogeneous functions and applications, Gaodeng Shuxue Yanjiu (Study in College Mathematics) 4 (2004), no. 7, 14-19.
- Zh.-H. Yang, On the homogeneous functions with two parameters and its monotonicity, J. Inequal. Pure Appl. Math. 6 (2005), no. 4, Art. 101.
- Zh.-H. Yang, On the log-convexity of two-parameter homogeneous functions, Math. Inequal. Appl. 10 (2007), no. 3, 499-516.
- Zh.-H. Yang, On the monotonicity and log-convexity of a four-parameter homogeneous mean, J. Inequal. Appl. 2008 (2008), Art. ID 149286, 12 pages.
- Zh.-H. Yang, Some monotonictiy results for the ratio of two-parameter symmetric homogeneous functions, Int. J. Math. Math. Sci. 2009 (2009), Art. ID 591382, 12 pages.
- Zh.-H. Yang, Necessary and sufficient conditions for Schur convexity of the two-parameter symmetric homogeneous means, Appl. Math. Sci. (Ruse) 5 (2011), no. 64, 3183-3190.
- Zh.-H. Yang, The log-convexity of another class of one-parameter means and its applications, Bull. Korean Math. Soc. 49 (2012), no. 1, 33-47. https://doi.org/10.4134/BKMS.2012.49.1.033
- X.-M. Zhang, Schur-convex functions and isoperimetric inequalities, Proc. Amer. Math. Soc. 126 (1998), no. 2, 461-470. https://doi.org/10.1090/S0002-9939-98-04151-3
- X.-M. Zhang, Geometrically Convex Functions, Hefei, An'hui University Press, 2004.
Cited by
- Schur quadratic concavity of the elliptic Neuman mean and its application vol.2014, pp.1, 2014, https://doi.org/10.1186/1029-242X-2014-397
- Schurm-Power Convexity of a Class of Multiplicatively Convex Functions and Applications vol.2014, 2014, https://doi.org/10.1155/2014/258108
- Schur-geometric convexity of the generalized Gini-Heronian means involving three parameters vol.2014, pp.1, 2014, https://doi.org/10.1186/1029-242X-2014-413
- The property of a new class of symmetric functions with applications vol.178, 2017, https://doi.org/10.1016/j.jnt.2017.02.002