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SCHUR POWER CONVEXITY OF GINI MEANS

Zhen-Hang Yang

Abstract. In this paper, the Schur convexity is generalized to Schur
f -convexity, which contains the Schur geometrical convexity, harmonic
convexity and so on. When f : R+ → R is defined as f(x) = (xm − 1)/m
if m 6= 0 and f(x) = lnx if m = 0, the necessary and sufficient conditions
for f -convexity (is called Schur m-power convexity) of Gini means are
given, which generalize and unify certain known results.

1. Introduction

Let p, q ∈ R and a, b ∈ R+ := (0,∞). The Gini means [13] are defined as

(1.1) Gp,q(a, b) =















(

ap + bp

aq + bq

)1/(p−q)

, p 6= q,

exp

(

ap ln a+ bp ln b

ap + bp

)

, p = q.

It is easy to see that the Gini means Gp,q(a, b) are continuous on the domain
{(a, b; p, q) : a, b ∈ R+; p, q ∈ R} and differentiable with respect to (a, b) ∈ R

2
+

for fixed p, q ∈ R. Also, Gini means are symmetric with respect to a, b and p, q.
Gini means Gp,q(a, b) contain many classical two variable means, for ex-

ample, G1,0 = A is the arithmetic mean, G0,0 = G is the geometric mean,
G−1,0 = H is the harmonic mean, and more generally, the p-th power mean
is equal to Gp,0, Gp,p−1 is the Lehmer mean. The basic properties of Gini
means, as well as their comparison theorems, log-convexities, and inequalities
are studied in papers [8, 9, 10, 11, 20, 21, 25, 26, 27, 30, 36, 43, 44, 45, 48].

Schur convexity was introduced by Schur in 1923 [22], and it has many
important applications in analytic inequalities [2, 15, 49], linear regression [35],
graphs and matrices [7], combinatorial optimization [16], information-theoretic
topics [12], Gamma functions [23], stochastic orderings [32], reliability [17], and
other related fields.
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In recent years, the Schur convexity and Schur geometrical convexity of
Gp,q(a, b) have attracted the attention of a considerable number of mathemati-
cians [4, 5, 19, 29, 28, 31, 33]. Sándor [31] proved that the Gini means Gp,q(a, b)
are Schur convex on (−∞, 0] × (−∞, 0] and Schur concave on [0,∞) × [0,∞)
with respect to (p, q) for fixed a, b > 0 with a 6= b. Yang [47] improved Sándor’s
result and proved that Gini means Gp,q(a, b) are Schur convex with respect to
(p, q) for fixed a, b > 0 with a 6= b if and only if p + q < 0 and Schur concave
if and only if p + q > 0. Wang and Zhang [38, 39] showed that Gini means
Gp,q(a, b) are Schur convex with respect to (a, b) ∈ R

2
+ if and only if p+ q ≥ 1,

p, q ≥ 0 and Schur concave if and only if p+ q ≤ 1, p ≤ 0 or p+ q ≤ 1, q ≤ 0.
Gu and Shi [14, 34] also discussed the Schur convexity. Recently, Chu and Xia
[6] also proved the same result as Wang and Zhang’s.

The Schur geometrical convexity was introduced by Zhang [50]. Wang and
Zhang [39] proved Gini means Gp,q(a, b) are Schur geometrically convex with
respect to (a, b) ∈ R

2
+ if p+ q ≥ 0 and Schur geometrically concave if p+ q ≤

0. Gu and Shi [14, 34] also investigated the Schur geometrical convexities of
Lehmer mean Gp,1−p(a, b) and Gini means Gp,q(a, b), respectively.

Recently, Anderson et al. [1] discussed an attractive class of inequalities,
which arise from the notion of harmonic convexity. And then it was started
to research for Schur harmonic convexity. Chu et al. [3] showed that the
Hamy symmetric function is Schur harmonic convex and obtained some analytic
inequalities including the well-known Weierstrass inequalities. Xia [40] proved
that the Lehmer mean Gp,p−1(a, b) is Schur harmonic convex (Schur harmonic
concave) with respect to (a, b) ∈ R

2
+ if and only if p ≥ (≤)0.

The purpose of this paper is to generalize the notion of Schur convexity and
to investigate the so-called Schur power convexity of Gini means Gp,q(a, b).

Our main results are as follows.

Theorem 1.1. For m > 0 and fixed (p, q) ∈ R
2, Gini mean Gp,q(a, b) is Schur

m-power convex with respect to (a, b) ∈ R
2
+ if and only if p + q ≥ m and

min(p, q) ≥ 0.

Theorem 1.2. For m > 0 and fixed (p, q) ∈ R
2, Gini mean Gp,q(a, b) is Schur

m-power concave with respect to (a, b) ∈ R
2
+ if and only if p + q ≤ m and

min(p, q) ≤ 0.

Theorem 1.3. For m < 0 and fixed (p, q) ∈ R
2, Gini mean Gp,q(a, b) is Schur

m-power convex with respect to (a, b) ∈ R
2
+ if and only if p + q ≥ m and

max(p, q) ≥ 0.

Theorem 1.4. For m < 0 and fixed (p, q) ∈ R
2, Gini mean Gp,q(a, b) is Schur

m-power concave with respect to (a, b) ∈ R
2
+ if and only if p + q ≤ m and

max(p, q) ≤ 0.

Theorem 1.5. For m = 0 and fixed (p, q) ∈ R
2, Gini mean Gp,q(a, b) is Schur

m-power convex (Schur m-power concave) with respect to (a, b) ∈ R
2
+ if and

only if p+ q ≥ (≤)0.
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The organization of the paper is as follows. In Section 2, based on the notions
and lemmas of Schur convexity, we introduce the definition of Schur f -convex
and Schur f -concave function, and prove the decision theorem for Schur f -
convexity. As special case, the definition and decision theorem of Schur power
convexity are deduced. In Section 3, some lemmas are given. In Section 4, our
main results are proved.

2. Schur f-convexity and Schur power convexity

For convenience of readers, we recall some definitions as follows.

Definition 2.1 ([22, 37]). Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) ∈
R

n(n ≥ 2).
(i) x is said to by majorized by y (in symbol x ≺ y) if

(2.1)
k

∑

i=1

x[i] ≤
k

∑

i=1

y[i] for 1 ≤ k ≤ n− 1,
n
∑

i=1

x[i] =
n
∑

i=1

y[i],

where x[1] ≥ x[2] ≥ · · · ≥ x[n] and y[1] ≥ y[2] ≥ · · · ≥ y[n] are rearrangements of
x and y in a decreasing order.

(ii) x ≥ y means xi ≥ yi for all i = 1, 2, . . . , n. Let Ω ⊆ R
n(n ≥ 2). The

function φ : Ω → R is said to be increasing if x ≥ y implies φ(x) ≥ φ(y). φ is
said to be decreasing if and only if −φ is increasing.

(iii) Ω ⊆ R
n is called a convex set if (αx1 + βy1, . . . , αxn + βyn) ∈ Ω for all

x, y and all α, β ∈ [0, 1] with α+ β = 1.
(iv) Let Ω ⊆ R

n(n ≥ 2) be a set with nonempty interior. Then φ : Ω → R

is said to be Schur convex if x ≺ y on Ω implies φ(x) ≤ φ(y). φ is said to be
Schur concave if −φ is Schur convex.

Definition 2.2 ([22]). (i) Ω ⊆ R
n(n ≥ 2) is called a symmetric set, if x ∈ Ω

implies xP ∈ Ω for every n× n permutation matrix P.
(ii) The function φ : Ω → R

n is called symmetric if for every permutation
matrix P, φ(xP) = φ(x) for all x ∈ Ω.

For the Schur convexity, there is the following well-known result.

Lemma 2.1 ([22, 37]). Let Ω ⊆ R
n be a symmetric set with nonempty interior

Ω0 and φ : Ω → R be continuous on Ω and differentiable in Ω0. Then φ is

Schur convex (Schur concave) on Ω if and only if φ is symmetric on Ω and

(2.2) (x1 − x2)

(

∂φ

∂x1
−

∂φ

∂x2

)

≥ (≤)0.

Next, let us define the Schur f -convexity as follows.

Definition 2.3. Let Ω = U
n(U ⊆ R) and f be a strictly monotone function

defined on U. Assume that

f(x) = (f(x1), f(x2), . . . , f(xn)) and f(y) = (f(y1), f(y2), . . . , f(yn)).
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(i) Ω is called a f -convex set if (f−1(αf(x1) + βf(y1)), . . . , f
−1(αf(xn) +

βf(yn))) ∈ Ω for all x,y ∈ Ω and all α, β ∈ [0, 1] with α+ β = 1.
(ii) Let Ω be a set with nonempty interior. Then function φ : Ω → R is said

to be Schur f -convex on Ω if f(x) ≺ f(y) on Ω implies φ(x) ≤ φ(y).
φ is said to be Schur f -concave if −φ is Schur f -convex.

Remark 2.1. Let Ω = U
n(U ⊆ R) and f be a strictly monotone function defined

on U and f(Ω) = {f(x) : x ∈ Ω}. Then function φ : Ω → R is Schur f -convex
(Schur f -concave) if and only if φ ◦ f−1 is Schur convex (Schur concave) on
f(Ω).

Indeed, if function φ : Ω → R is Schur f -convex, then ∀x′,y′ ∈ f(Ω), there
are x,y ∈ Ω such that x′ = f(x),y′ = f(y). If f(x) ≺ f(y), that is, x′ ≺ y′,
then φ(x) ≤ φ(y), that is, φ((f−1(x′)) ≤ φ((f−1(y′)). This shows that φ ◦ f−1

is Schur convex on f(Ω). Conversely, if φ ◦ f−1 is Schur convex on f(Ω), then
∀x,y ∈ Ω such that f(x) ≺ f(y), we have φ((f−1(f(x))) ≤ φ((f−1(f(y))),
that is, φ(x) ≤ φ(y). This indicates φ is Schur f -convex on Ω.

In the same way, we can show that φ is Schur f -concave on Ω if and only if
φ ◦ f−1 is Schur concave on f(Ω).

Remark 2.2. Let Ω ⊆ R
n(n ≥ 2) be a symmetric set and the function φ : Ω → R

be Schur f -convex (Schur f -concave). Then φ is symmetric on Ω.
In fact, for any x ∈ Ω and every permutation matrix P , we have xP ∈ Ω.

Note xP is another permutation of x, hence f(x) ≺ f(xP) ≺ f(x). Since φ is
Schur f -convex (Schur f -concave), we have φ(x) ≤ (≥)φ(xP) ≤ (≥)φ(x), that
is, φ(xP) = φ(x) for all x ∈ Ω. This shows that φ is symmetric on Ω.

By Lemma 2.1 and Remarks 2.1, 2.2, we have the following:

Theorem 2.1. Assume that Ω = U
n(U ⊆ R) is a symmetric set with nonempty

interior Ω0, f is a strictly monotone and derivable function defined on U, and

φ : Ω → R is continuous on Ω and differentiable in Ω0. Then φ is Schur

f -convex (Schur f -concave) on Ω if and only if φ is symmetric on Ω and

(2.3) (f(x1)− f(x2))

(

1

f ′(x1)

∂φ

∂x1
−

1

f ′(x2)

∂φ

∂x2

)

≥ (≤)0

holds for any x = (x1, x2, . . . , xn) ∈ Ω0 with x1 6= x2.

Proof. We easily check that φ ◦ f−1 is symmetric on f(Ω) if and only if φ is
symmetric on Ω.

By Remark 2.1 and Lemma 2.1, φ ◦ f−1 is Schur convex (Schur concave) if
and only if φ ◦ f−1 is symmetric on f(Ω) and

(y1 − y2)

(

∂(φ ◦ f−1)

∂y1
−

∂(φ ◦ f−1)

∂y2

)

≥ (≤)0

holds for any y ∈ f(Ω)0 with y1 6= y2. Substituting f−1(y) = x yields (2.3),
where x = (x1, x2, . . . , xn) ∈ Ω0 with x1 6= x2.

This proof is finished. �
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Putting f(x) = 1, lnx, x−1 in Definition 2.3 yield the Schur convexity, Schur
geometrical convexity and Schur harmonic convexity. It is clear that the Schur
f -convexity is a generalization of the Schur convexity mentioned above. In
general, we have:

Definition 2.4. Let f : R+ → R be defined by f(x) = (xm − 1)/m if m 6= 0
and f(x) = lnx if m = 0. Then function φ : Ω(⊆ R

n
+) → R is said to be Schur

m-power convex on Ω if f(x) ≺ f(y) on Ω implies φ(x) ≤ φ(y).
φ is said to be Schur m-power concave if −φ is Schur m-power convex.

For the Schur power convexity, by Theorem 2.1 we have:

Corollary 2.1. Let Ω ⊆ R
n
+ be a symmetric set with nonempty interior Ω0

and φ : Ω → R be continuous on Ω and differentiable in Ω0. Then φ is Schur

m-power convex (Schur m-power concave) on Ω if and only if φ is symmetric

on Ω and

xm
1 − xm

2

m

(

x1−m
1

∂φ

∂x1
− x1−m

2

∂φ

∂x2

)

≥ (≤)0 if m 6= 0,(2.4)

(ln x1 − lnx2)

(

x1
∂φ

∂x1
− x2

∂φ

∂x2

)

≥ (≤)0 if m = 0(2.5)

holds for any x = (x1, x2, . . . , xn) ∈ Ω0 with x1 6= x2.

3. Lemmas

To prove the main results, we need the following useful lemmas.

Lemma 3.1. For fixed (p, q) ∈ R
2, Gini means Gp,q(a, b) is Schur m-power

convex (Schur m-power concave) with respect to (a, b) ∈ R
2
+ if and only if g(t)

≥ (≤)0 for all t > 0, where

(3.1) g(t) := gp,q(t) =

{

(p−q) sinhAt+p sinhBt+q sinhCt
p−q if p 6= q,

sinh(2p−m)t− sinhmt+ 2pt coshmt if p = q,

and

(3.2) A = p+ q −m, B = p− q −m, C = p− q +m.

Proof. Let m 6= 0 and G = Gp,q := Gp,q(a, b) defined by (1.1).
For p 6= q, some simple partial derivative calculations yield

∂ lnG

∂a
=

1

G

∂G

∂a
=

1

p− q

(

pap−1

ap + bp
−

qaq−1

aq + bq

)

,

∂ lnG

∂b
=

1

G

∂G

∂b
=

1

p− q

(

pbp−1

ap + bp
−

qbq−1

aq + bq

)

.

Therefore, we have

a1−m ∂φ

∂a
− b1−m ∂φ

∂b
=

G

p− q

(

p
ap−m − bp−m

ap + bp
− q

aq−m − bq−m

aq + bq

)

.
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Substituting ln
√

a/b = t and using sinhx = 1
2 (e

x−e−x), coshx = 1
2 (e

x+e−x),
the right hand side above can be written as

a1−m∂φ

∂a
− b1−m ∂φ

∂b

=
G (ab)−m/2

p− q

(

p
sinh(p−m)t

cosh pt
− q

sinh(q −m)t

cosh qt

)

=
G (ab)

−m/2

2 coshpt cosh qt

2p sinh(p−m)t cosh qt− 2q sinh(q −m)t cosh pt

p− q
.

Using the “product into sum” formula for hyperbolic functions and (3.1), we
have

∆ :=
am − bm

m

(

a1−m ∂Gp,q

∂a
− b1−m ∂Gp,q

∂b

)

=
am − bm

m(a− b)

(a− b)Gp,q

2 (ab)
m/2

cosh pt cosh qt

(p− q) sinhAt+ p sinhBt+ q sinhCt

p− q

= dp,q(t) · gp,q(t),

where

dp,q(t) =
am − bm

m(a− b)

(a− b)Gp,q

2 (ab)
m/2

cosh pt cosh qt
(p 6= q)

and gp,q(t) is defined by (3.1).
In the case of p = q, since Gp,q(a, b) ∈ C1 we have

∂Gp,p

∂a
= lim

q→p

∂Gp,q

∂a
,

∂Gp,p

∂b
= lim

q→p

∂Gp,q

∂b
.

It follows that

∆ =
am − bm

m

(

a1−m ∂Gp,p

∂a
− b1−m∂Gp,p

∂b

)

= lim
q→p

(

am − bm

m

(

a1−m ∂Gp,q

∂a
− b1−m ∂Gp,q

∂b

))

= lim
q→p

(dp,q(t)gp,q(t)) = gp,p(t) lim
q→p

dp,q(t).

Summarizing two cases above yield

∆ =
am − bm

m

(

a1−m ∂φ

∂a
− b1−m ∂φ

∂b

)

=







gp,q(t) · dp,q(t) if p 6= q,

gp,p(t) lim
q→p

dp,q(t) if p = q.

Since ∆ is symmetric with respect to a and b, without loss of generality

we assume a > b. It is easy to verify that am
−bm

m(a−b) > 0,
(a−b)Gp,q

2(ab)m/2 > 0, and
1

cosh pt cosh qt > 0 for t = ln
√

a/b > 0, which implies that dp,q(t) and its limit at
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p = q are both positive. Thus by Corollary 2.1 Gini mean Gp,q(a, b) is Schur
m-power convex (Schur m-power concave) with respect to (a, b) ∈ R

2
+ if and

only if ∆ ≥ (≤)0 if and only if g(t) = gp,q(t) ≥ (≤)0 for all t > 0.
It is easy to check that for m = 0 this lemma is also true.
This lemma is proved. �

Lemma 3.2. Let g(t) = gp,q(t) be defined by (3.1). Then

(3.3) lim
t→0,t>0

gp,q(t)

2t
= p+ q −m.

Proof. It is easy to check that g(0) = 0.
In the case of p 6= q, applying L’Hospital’s rule yields

lim
t→0,t>0

gp,q(t)

2t
= lim

t→0,t>0

∂gp,q(t)

2∂t

=
(p− q)A+ pB + qC

2(p− q)
= p+ q −m.

In the case of p = q, we have

lim
t→0,t>0

gp,p(t)

2t
= 2p−m.

This completes the proof. �

Lemma 3.3. Let m > 0 and β = max(|A|, |B|, |C|) where A,B,C are defined

by (3.1). Then

(i) if p > q, then

(3.4) lim
t→∞

2βgp,q(t)

eβt
=



















p+ q −m if p > q > m or 0 > p > q,
p2

p−m if p > q = m,

2(q −m) if p = 0 > q,
q(p−q+m)

p−q if p > 0, q < m, p > q;

(ii) if p = q, then

(3.5) lim
t→∞

2βgp,p(t)

eβt
=







2p−m if p > m or p < 0,
−2m if p = 0,
∞ if 0 < p ≤ m.

Proof. (3.4)-(3.5) easily follows from the following limit relations:

lim
t→∞

2 coshαt

eβt
=

{

1 if β = |α|,
0 if β > |α|,

lim
t→∞

2αt sinhαt

eβt
=

{

∞ if β = |α|,
0 if β > |α|.

(i) If p > q, then β = max(|A|, |B|, |C|) = max(|A|, |C|) because |C|2 −
|B|2 = 4m(p− q) > 0. We have

(p− q) lim
t→∞

2βgp,q(t)

eβt
= (p− q) lim

t→∞

2

eβt
∂gp,q(t)

∂t
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= lim
t→∞

2
(p− q)A coshAt+ pB coshBt+ qC coshCt

eβt

=







(p− q)A if |A| > |C|, i.e., p(q −m) > 0,
(p− q)A+ qC if |A| = |C|, i.e., p(q −m) = 0,
qC if |A| < |C|, i.e., p(q −m) < 0.

=















(p− q)(p+ q −m) if p > q > m or 0 > p > q,
p2 if p > q = m,
−2q(q −m) if p = 0 > q,
q(p− q +m) if p > 0, q < m, p > q.

Dividing by (p− q) in the above limit relation yields (3.4).
(ii) If p = q, then β = max(|A|, |B|, |C|) = max(|2p−m|,m). We have

lim
t→∞

2βgp,p(t)

eβt
= lim

t→∞

2

eβt
∂gp,p(t)

∂t

= lim
t→∞

2
(2p−m) cosh(2p−m)t+ (2p−m) coshmt+ 2mp sinhmt

eβt

=















2p−m if |2p−m| > m, i.e., p > m or p < 0,
∞ if |2p−m| = m, p 6= 0, i.e., p = m,
−2m if |2p−m| = m, p = 0, i.e. p = 0,
∞ if |2p−m| < m, i.e., 0 < p < m,

which implies (3.5).
This completes the proof. �

4. Proof of main results

Proof of Theorem 1.1. Assume that

E1 = {(p, q) : p+ q −m ≥ 0,min(p, q) ≥ 0} (m > 0).

By Lemma 3.1, to prove Theorem 1.1, it suffices to prove that gp,q(t) ≥ 0 for
all t > 0 if and only if (p, q) ∈ E1.
Necessity. We prove that (p, q) ∈ E1 is the necessary conditions for g(t) =
gp,q(t) ≥ 0 for all t > 0. It is obvious that

(4.1) lim
t→0,t>0

gp,q(t)

2t
≥ 0 and lim

t→∞

2βgp,q(t)

eβt
≥ 0.

Now, we get the necessary conditions from (4.1) together with (3.4) and (3.5).
To this aim, we distinguish three cases.

(i) Case 1: p > q. By (4.1) together with (3.3) and (3.4), we have
Subcase 1:







p+ q −m ≥ 0,
p+ q −m ≥ 0,
p > q > m or 0 > p > q

=⇒ p > q > m,

which implies (p, q) ∈ {(p, q) : p > q > m} := E11.
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Subcase 2:






p+ q −m ≥ 0,
p2

p−m ≥ 0,

p > q = m

=⇒ p > q = m,

which implies (p, q) ∈ {(p, q) : p > q = m} := E12.
Subcase 3:







p+ q −m ≥ 0,
2(q −m) ≥ 0,
p = 0 > q

=⇒ which is impossible.

Subcase 4:






















p+ q −m ≥ 0,
q(p−q+m)

p−q ≥ 0,

p > 0,
q < m,
p > q

=⇒















p+ q −m ≥ 0,
p > 0,
0 < q < m,
p > q,

which implies (p, q) ∈ {(p, q) : p+ q −m ≥ 0, p > 0, 0 < q < m, p > q} := E14.
(i′) Case 1′: p < q. Since gp,q(t) is symmetric with respect to p and q, we

get (p, q) ∈ E′

111 ∪ E′

112 ∪ E′

114, where

E′

11 = {(p, q) : q > p > m}, E′

12 = {(p, q) : q > p = m},

E′

14 = {(p, q) : p+ q −m ≥ 0, q > 0, 0 < p < m, q > p}.

(ii) Case 2: p = q. By (4.1) together with (3.3) and (3.5), we have
Subcase 1:







p+ q −m ≥ 0,
2p−m ≥ 0,
p > m or p < 0

=⇒ p = q > m.

Subcase 2:






p+ q −m ≥ 0,
−2m ≥ 0,
p = 0

=⇒ which is impossible.

Subcase 3:






p+ q −m ≥ 0,
∞ ≥ 0,
0 < p ≤ m

=⇒
m

2
≤ p = q < m.

The above three subcases imply (p, q) ∈ {(p, q) : p = q ≥ m
2 } := E10.

Summarizing all the cases (i), (i′) and (ii) yields

(p, q) ∈ (E11 ∪ E12 ∪ E14) ∪ (E′

11 ∪ E′

12 ∪ E′

14) ∪ E10 = E1.

Sufficiency. We prove the condition (p, q) ∈ E1 is sufficient for g(t) = gp,q(t) ≥
0 for all t > 0. Since g(0) = 0, it is enough to prove g′(t) ≥ 0 if (p, q) ∈ E1.
For symmetry, we may assume again that p ≥ q.
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Noting
(p− q)A = pB + qC or pB = (p− q)A− qC,

we have

(p− q)g′(t) = (p− q)A coshAt+ pB coshBt+ qC coshCt

= (p− q)A(coshAt+ coshBt) + qC(coshCt− coshBt)

= (p− q)A(coshAt+ coshBt) + 2qC sinh(p− q)t sinhmt.(4.2)

If p > q and (p, q) ∈ E1, then A = p + q − m ≥ 0, q = min(p, q) ≥ 0,
C = p− q +m > 0. It follows that (p− q)g′(t) ≥ 0 for (p, q) ∈ E1.

If p = q and (p, q) ∈ E1, then 2p−m ≥ 0, p = min(p, q) ≥ 0. Therefore,

(4.3) g′(t) = (2p−m) cosh(2p−m)t+ (2p−m) coshmt+ 2mp sinhmt ≥ 0.

This completes the proof of Theorem 1.1. �

Proof of Theorem 1.2. Assume that

E2 = {(p, q} : p+ q −m ≤ 0, p ≥ q, q ≤ 0} (m > 0),

E′

2 = {(p, q} : p+ q −m ≤ 0, q ≥ p, p ≤ 0} (m > 0),

then

E2 ∪ E′

2 = {(p, q} : p+ q −m ≤ 0 and min(p, q) ≤ 0} (m > 0).

By Lemma 3.1, to prove Theorem 1.2, it suffices to show that gp,q(t) ≤ 0 for
all t > 0 if and only if (p, q) ∈ E2 ∪E′

2.
Necessity. If gp,q(t) ≤ 0 for all t > 0, then

(4.4) lim
t→0,t>0

gp,q(t)

2t
≤ 0 and lim

t→∞

2βgp,q(t)

eβt
≤ 0.

Similarly, we divide the proof of necessity into three cases.
(i) Case 1: p > q. By (4.4) together with (3.3) and (3.4), we have
Subcase 1:







p+ q −m ≤ 0,
p+ q −m ≤ 0,
p > q > m or 0 > p > q

=⇒ 0 > p > q,

which implies (p, q) ∈ {(p, q) : 0 > p > q} := E21.
Subcase 2:







p+ q −m ≤ 0,
p2

p−m ≤ 0,

p > q = m

=⇒ which is impossible.

Subcase 3:






p+ q −m ≤ 0,
2(q −m) ≤ 0,
p = 0 > q

=⇒ p = 0 > q,

which implies (p, q) ∈ {(p, q) : p = 0 > q} := E23.
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Subcase 4:






















p+ q −m ≤ 0,
q(p−q+m)

p−q ≤ 0,

p > 0,
q < m,
p > q

=⇒

{

p+ q −m ≤ 0,
p > 0 ≥ q,

which implies (p, q) ∈ {(p, q) : p+ q −m ≤ 0, p > 0 ≥ q} := E24.
(i′) Case 1′: p < q. Since gp,q(t) is symmetric with respect to p and q, so

(p, q) ∈ E′

21 ∪ E′

23 ∪E′

24, where

E′

21 = {(p, q) : 0 > q > p},

E′

23 = {(p, q) : q = 0 > p},

E′

24 = {(p, q) : p+ q −m ≤ 0, q > 0 ≥ p}.

(ii) Case 2: p = q. By (4.4) together with (3.3) and (3.5), we have
Subcase 1:







p+ q −m ≤ 0,
2p−m ≤ 0,
p > m or p < 0

=⇒ p = q < 0.

Subcase 2:






p+ q −m ≤ 0,
−2m ≤ 0,
p = 0

=⇒ p = q = 0.

Subcase 3:






p+ q −m ≤ 0,
∞ ≤ 0,
0 < p ≤ m

=⇒ which is impossible.

The above three subcases imply (p, q) ∈ {(p, q) : p = q ≤ 0} := E20.
Summarizing all the cases (i), (i′) and (ii) yields

(p, q) ∈ (E21 ∪ E23 ∪ E24) ∪ (E′

21 ∪E′

23 ∪E′

24) ∪E20 = E2 ∪ E′

2.

Sufficiency. Similarly to proof of sufficiency of Theorem 1.1, by (4.2) and (4.3)
we easily prove g′(t) ≤ 0 if (p, q) ∈ E2 ∪ E′

2. Hence gp,q(t) = g(t) ≤ g(0) = 0
for all t > 0.

The proof of Theorem 1.2 is completed. �

Proof of Theorem 1.3. Let gp,q,m(t) := gp,q(t) be defined by (3.1) and

p′ = −p, q′ = −q, m′ = −m.

We easily verify that, for p, q, p′, q′,m,m′ ∈ R,

gp,q,m(t) = −gp′,q′,m′(t).
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From this and Lemma 3.1, for m < 0, Gini mean Gp,q(a, b) is Schur m-power
convex if and only if Gp′,q′(a, b) is Schur m′-power concave with respect to
(a, b) ∈ R

2
+, which, by Theorem 1.2, if and only if

p′ + q′ ≤ m′ and min(p′, q′) ≤ 0,

that is,

p+ q ≥ m and max(p, q) ≥ 0.

Theorem 1.3 follows. �

Proof of Theorem 1.4. Similarly as in the proof of Theorem 1.3, for m < 0,
Gini mean Gp,q(a, b) is Schur m-power concave if and only if Gp′,q′(a, b) is
Schur m′-power convex with respect to (a, b) ∈ R

2
+, which, by Theorem 1.1, if

and only if

p′ + q′ ≥ m′ and min(p′, q′) ≥ 0,

that is,

p+ q ≤ m and max(p, q) ≤ 0,

The proof of Theorem 1.4 ends. �

Proof of Theorem 1.5. By Lemma 3.1, to prove Theorem 1.5, it is enough to
prove that gp,q(t) ≥ (≤)0 for all t > 0 if and only if p + q ≥ (≤)0 for m = 0.
To this end, we divide the proof into two cases.

(i) Case 1: p 6= q. By (3.1), we have

gp,q(t) =
(p− q) sinh(p+ q)t+ (p+ q) sinh(p− q)t

p− q

=

{

t(p+ q)
(

sinh(p+q)t
(p+q)t + sinh(p−q)t

(p−q)t

)

if p+ q 6= 0,

0 if p+ q = 0.

Since sinhu
u > 0 for all u 6= 0 and t > 0, we obtain sgn (gp,q(t)) = sgn(p+ q).

(ii) Case 2: p = q. By (3.1), we have

gp,p(t) =

{

2pt
(

sinh(2pt)
2pt + 1

)

if p 6= 0,

0 if p = 0.

It is obvious that sgn (gp,p(t)) = sgn(p).
In brief, gp,q(t) ≥ (≤)0 for all t > 0 if and only if p+ q ≥ (≤)0.
The proof of Theorem 1.5 is finished. �
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[26] E. Neuman and Zs. Páles, On comparison of Stolarsky and Gini means, J. Math. Anal.

Appl. 278 (2003), no. 2, 274–284.
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