참고문헌
- F. Acker and M. A. Prestel, Convergence d'un schema de minimisation alternee, Ann. Fac. Sci. Toulouse Math. (5) 2 (1980), no. 1, 1-9. https://doi.org/10.5802/afst.541
- R. P. Agarwal, Y. J. Cho, and N. Petrot, Systems of general nonlinear set-valued mixed variational inequalities problems in Hilbert spaces, Fixed Point Theory Appl. 2011 (2011):31, 10 pp; doi:10.1186/1687-1812-2011-31.
- E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994), no. 1-4, 123-145.
- L. C. Ceng, C. Y. Wang, and J. C. Yao, Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities, Math. Methods Oper. Res. 67 (2008), no. 3, 375-390. https://doi.org/10.1007/s00186-007-0207-4
- L. C. Ceng and J. C. Yao, A hybrid iterative scheme for mixed equilibrium problems and fixed point problems, J. Comput. Appl. Math. 214 (2008), no. 1, 186-201. https://doi.org/10.1016/j.cam.2007.02.022
- Y. J. Cho, I. K. Argyros, and N. Petrot, Approximation methods for common solutions of generalized equilibrium, systems of nonlinear variational inequalities and fixed point problems, Comput. Math. Appl. 60 (2010), no. 8, 2292-2301. https://doi.org/10.1016/j.camwa.2010.08.021
- Y. J. Cho and N. Petrot, An optimization problem related to generalized equilibrium and fixed point problems with applications, Fixed Point Theory 11 (2010), no. 2, 237-250.
- Y. J. Cho and N. Petrot, On the system of nonlinear mixed implicit equilibrium problems in Hilbert spaces, J. Inequal. Appl. 2010 (2010), Article ID 437976, 12 pp.; doi:10.1155/2010/437976.
- Y. J. Cho, J. I. Kang, and X. Qin, Convergence theorems based on hybrid methods for generalized equilibrium problems and fixed point problems, Nonlinear Anal. 71 (2009), no. 9, 4203-4214. https://doi.org/10.1016/j.na.2009.02.106
- P. L. Combettes and S. A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal. 6 (2005), no. 1, 117-136.
- S. D. Flam and A. S. Antipin, Equilibrium programming using proximal-like algorithms, Math. Programming 78 (1997), no. 1, 29-41. https://doi.org/10.1016/S0025-5610(96)00071-8
- K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Stud. Adv. Math., vol. 28, Cambridge Univ. Press, 1990.
- H. He, S. Liu, and Y. J. Cho, An explicit method for systems of equilibrium problems and fixed points of infinite family of nonexpansive mappings, J. Comput. Appl. Math. 235 (2011), no. 14, 4128-4139. https://doi.org/10.1016/j.cam.2011.03.003
- M. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506-510. https://doi.org/10.1090/S0002-9939-1953-0054846-3
- A. Moudafi, Weak convergence theorems for nonexpansive mappings and equilibrium problems, J. Nonlinear Convex Anal. 9 (2008), no. 1, 37-43.
- A. Moudafi, From alternating minimization algorithms and system of variational in-equalities to equilibrium problems, Comm. Appl. Nonlinear Anal. 16 (2009), no. 3, 31-35.
- Z. Opial, Weak convergence of the sequence of successive approximations for nonexpan-sive mappings, Bull. Amer. Math. Soc. 73 (1967), 595-597.
- M. O. Osilike and D. I. Igbokwe, Weak and strong convergence theorems for fixed points of pseudocontractions and solutions of monotone type operator equations, Comput. Math. Appl. 40 (2000), no. 4-5, 559-567. https://doi.org/10.1016/S0898-1221(00)00179-6
- J.-W. Peng and J.-C. Yao, A new hybrid-extragradient method for generalized mixed equilibrium problems, fixed point problems and variational inequality problems, Taiwanese J. Math. 12 (2008), no. 6, 1401-1432.
- S. Plubtieng and K. Sombut, Weak convergence theorems for a system of mixed equilibrium problems and nonspreading mappings in a Hilbert space, J. Inequal. Appl. 2010 (2010), Art. ID 246237, 12 pp.
- S. Plubtieng and T. Thammathiwat, A viscosity approximation method for equilibrium problems, fixed point problems of nonexpansive mappings and a general system of variational inequalities, J. Global Optim. 46 (2010), no. 3, 447-464. https://doi.org/10.1007/s10898-009-9448-5
- X. Qin, S. S. Chang, and Y. J. Cho, Iterative methods for generalized equilibrium problems and fixed point problems with applications, Nonlinear Anal. Real World Appl. 11 (2010), no. 4, 2963-2972. https://doi.org/10.1016/j.nonrwa.2009.10.017
- R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim. 14 (1976), no. 5, 877-898. https://doi.org/10.1137/0314056
- W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.
- W. Takahashi, Introduction to Nonlinear and Convex Analysis, Yokohama Publishers, Yokohama, 2009.
- W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl. 118 (2003), no. 2, 417-428. https://doi.org/10.1023/A:1025407607560
- S. Takahashi and W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl. 331 (2007), no. 1, 506-515. https://doi.org/10.1016/j.jmaa.2006.08.036
- R. U. Verma, Projection methods, algorithms, and a new system of nonlinear variational inequalities, Comput. Math. Appl. 41 (2001), no. 7-8, 1025-1031. https://doi.org/10.1016/S0898-1221(00)00336-9
- H. K. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl. 298 (2004), no. 1, 279-291. https://doi.org/10.1016/j.jmaa.2004.04.059
- Y. Yao, Y. C. Liou, and J. C. Yao, A new hybrid Iterative algorithm for fixed point problems, variational inequality problems, and mixed equilibrium problems, Fixed Point Theory Appl. 2008 (2008), Art. ID 417089, 15 pp.; doi:10.1155/2008/417089.
- Y. Yao, Y. J. Cho, and Y. C. Liou, Iterative algorithms for variational inclusions, mixed equilibrium and fixed point problems with application to optimization problems, Cent. Eur. J. Math. 9 (2011), no. 3, 640-656. https://doi.org/10.2478/s11533-011-0021-3
- Y. Yao, Y. J. Cho, and Y. C. Liou, Algorithms of common solutions for variational inclusions, mixed equilibrium problems and fixed point problems, European J. Oper. Res. 212 (2011), no. 2, 242-250. https://doi.org/10.1016/j.ejor.2011.01.042