DOI QR코드

DOI QR Code

Characteristics of CIGS Thin Film Photovoltaic Cells with a Change of Rising-Temperature Time in Rapid Thermal Processing

급속열처리장치 승온 조건에 따른 CIGS 박막 태양전지 특성 연구

  • 정용민 (금호전기 종합기술원) ;
  • 박찬일 (조선대학교 대학원 전기공학과) ;
  • 조금배 (조선대학교 전기공학과)
  • Received : 2013.02.01
  • Accepted : 2013.03.04
  • Published : 2013.03.31

Abstract

Cu(In,Ga)$Se_2$ (CIGS) thin films were annealed on molybdenium/sodalime glass substrates of $300{\times}300mm^2$ by rapid thermal processing (RTP) with 2-step rising-temperature times in $N_2$ ambient. Morphological property, structural characteristics and chemical composition of the precursor of CIGS thin films were influenced directly with a change of $1^{st}$-step rising-temperature time in RTP whereas there is no significant difference with the different $2^{nd}$-step rising-temperature time (final crystallization temperature). The shorter $1^{st}$-step rising-temperature time in RTP obtained the higher photovoltaic cell efficiency from 7.469% to 8.479% even though the ideal composition in CIGS thin films could not be accoplished in this study.

Keywords

References

  1. M. Kemell, M. Ritala, M. Leskela, Thin film deposition methods for CuInSe2 solar cells, Crit. Rev, Solid State Mater. Sci. 30 (1) 2005.
  2. I. Repins, M. A. Contreras, B. Egaas, C. Dehart, J. Scharf, C. L. Perkins, B. To, R. Noufi, 19.9%-efficient ZnO/CdS/ CuInGaSe2 solar cell with 81.2% fill factor, Prog. Photovolt: Res. Appl. 16 (3) 2008.
  3. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, M. Powalla, New world record efficiency for $Cu(In,Ga)Se_{2}$ thin-film solar cells beyond 20%, Prog. Photovolt. Res. Appl. 19 (7) 2011.
  4. B. T. Jheng, P. T. Liu, M. C. Wu, H. P. D. Shieh, A non-selenization technology by co-sputtering deposition for solar cell applications, Opt. Lett. 37 (13) 2012.
  5. Y. C. Lin, J. H. Ke, C. C. Chen, Effect of deposition conditions on the characterization of $Cu(In,Ga)Se_{2}$ precursor films by sputtering process, Appl. Mech. Mater. 189 (2012) 2012.
  6. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, Solar cell efficiency tables (version 37), Prog. Photovolt: Res. Appl. 19 (1) 2011.
  7. S. Seike, K. Shiosaki, M. Kuremoto, H. Komaki, K. Matsubara, H. Shibata, S. Ishizuka, A. Yamada, S. Niki, Development of high-efficiency CIGS integrated submodules using in-line deposition technology, Sol. Energy Mater. Sol. Cells 95 (1) 2011.
  8. J. H. Yun, K. H. Kim, M. S. Kim, B. T. Ahn, S. J. Ahn, J. C. Lee, K. H. Yoon, Fabrication of CIGS solar cells with a Na-doped Molayer on a Na-free substrate, Thin Solid Films 515 (15) 2007.
  9. K. Decock, J. Lauwaert, M. Burgelman, Characterization of graded CIGS solar cells, Energy Procedia 2 (1) 2010.
  10. H. K. Song, S. G. Kim, H. J. Kim, S. K. Kim, K. W. Kang, J. C. Lee, K. H. Yoon, Preparation of $ thin films by sputtering and selenization process, Sol. Energy Mater. Sol. Cells 75 (1-2) 2003.
  11. W. W. Lam, I. Shih, Crystal growth of $ by horizontal bridgman method, Sol. Energy Mater. Sol. Cells 50 (1-4) 1998.
  12. R. Caballero, C. Guillen, Comparative studies between Cu-Ga-Se and Cu-In-Se thin film systems, Thin Solid Films 403-404 2002.
  13. R. N. Bhattacharya, W. Batchelor, J. E. Granata, F. Hasoon, H. Wiesner, K. Ramanathan, J. Keane, R. N. Noufi, $-based photovoltaic cells from electrodeposited and chemical bath deposited precursors, Sol. Energy Mater. Sol. Cells 55 (1-2) 1998.
  14. R. Caballero, C. A. Kaufmann, T. Eisenbarth, M. Cancela, R. Hesse, T. Unold, A. Eicke, R. Klenk, H. W. Schock, The influence of Na on low temperature growth of CIGS thin film solar cells on polyimide substrates, Thin Solid Films 517 (7) 2009.
  15. S. H. Han, F. S. Hasoon, J. W. Pankow, A. M. Hermann, D. H. Levi, Effect of Cu deficiency on the optical bowing of chalcopyrite $, Appl. Phys. Lett. 87 (15) 2005.
  16. G. Voorwinden, R. Kniese, M. Powalla, In-line $Cu(In,Ga)Se_{2}$ co-evaporation processes with graded band gaps on large substrates, Thin Solid Films 431-432 2003.