DOI QR코드

DOI QR Code

Effect of Carbohydrate Sources and Levels of Cotton Seed Meal in Concentrate on Feed Intake, Nutrient Digestibility, Rumen Fermentation and Microbial Protein Synthesis in Young Dairy Bulls

  • Wanapat, Metha (Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University) ;
  • Anantasook, N. (Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University) ;
  • Rowlinson, P. (School of Agriculture, Food and Rural Development Agriculture Building, Newcastle University) ;
  • Pilajun, R. (Department of Animal Science, Faculty of Agriculture, Ubon Ratchathani University) ;
  • Gunun, P. (Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University)
  • Received : 2012.11.01
  • Accepted : 2013.01.02
  • Published : 2013.04.01

Abstract

The objective of this study was to investigate the effect of levels of cottonseed meal with various carbohydrate sources in concentrate on feed intake, nutrient digestibility, rumen fermentation and microbial protein synthesis in dairy bulls. Four, 6 months old dairy bulls were randomly assigned to receive four dietary treatments according to a $2{\times}2$ factorial arrangement in a $4{\times}4$ Latin square design. Factor A was carbohydrate source; cassava chip (CC) and cassava chip+rice bran in the ratio of 3:1 (CR3:1), and factor B was cotton seed meal levels in the concentrate; 109 g CP/kg (LCM) and 328 g CP/kg (HCM) at similar overall CP levels (490 g CP/kg). Bulls received urea-lime treated rice straw ad libitum and were supplemented with 10 g of concentrate/kg BW. It was found that carbohydrate source and level of cotton seed meal did not have significant effects on ruminal pH, ammonia nitrogen concentration, microbial protein synthesis or feed intake. Animals which received CC showed significantly higher BUN concentration, ruminal propionic acid and butyric acid proportions, while dry matter, organic matter digestibility, populations of total viable bacteria and proteolytic bacteria were lower than those in the CR3:1 treatment. The concentration of total volatile fatty acids was higher in HCM than LCM treatments, while the concentration of butyric acid was higher in LCM than HCM treatments. The population of proteolytic bacteria with the LCM treatments was higher than the HCM treatments; however other bacteria groups were similar among the different levels of cotton seed meal. Bulls which received LCM had higher protein digestibility than those receiving HCM. Therefore, using high levels of cassava chip and cotton seed meal might positively impact on energy and nitrogen balance for the microbial population in the rumen of the young dairy bull.

Keywords

References

  1. Aldrich, J. M., L. D. Muller, G. A. Varga and L. C. Jr. Griel. 1993. Non structural carbohydrate and protein effects on rumen fermentation, nutrient flow, and performance of dairy cows. J. Dairy Sci. 76:1091-1105. https://doi.org/10.3168/jds.S0022-0302(93)77438-X
  2. AOAC. 1991. Official methods of analysis. Association of Official Analysis Chemists, DC, USA. p. 1230.
  3. AOAC. 1995. Official method of analysis, 16th ed. Animal Feeds: Association of Official Analytical Chemists, Virginia, USA, pp. 1-18.
  4. Bach, A., S. Calsamiglia and M. D. Stern. 2005. Nitrogen metabolism in the rumen. J. Dairy Sci. 88:E9-E21. https://doi.org/10.3168/jds.S0022-0302(05)73133-7
  5. Baldwin, R. L. VI. 1998. Use of isolated ruminal epithelial cells in the study of rumen metabolism. J. Nutr. 128:293S-296S.
  6. Baldwin, R. L. VI., K. R. McLeod, J. L. Klotz and R. N. Heitmann. 2004. Rumen development, intestinal growth and hepatic metabolism in the pre- and post-weaning ruminant. J. Dairy Sci. 87:E55-E65. https://doi.org/10.3168/jds.S0022-0302(04)70061-2
  7. Bannink, A., J. Kogut, J. Dijkstra, J. France, E. Kebreab, A. M. Van Vuuren and S. Tamming. 2006. Estimation of the stoichiometry of volatile fatty acid production in the rumen of lactating cows. J. Theor. Biol. 238:36-51. https://doi.org/10.1016/j.jtbi.2005.05.026
  8. Bremmer, J. M. and D. R. Keeney. 1965. Steam distillation methods to determination of ammonium, nitrate and nitrite. Anal. Chim. Acta. 32:485-495. https://doi.org/10.1016/S0003-2670(00)88973-4
  9. Bruckental, I., S. M. Abramson, S. M. Zamwel, G. Adin and A. Ariel. 2002. Effect of dietary undegradable crude protein level on total nonstructural carbohydrate (TNC) digestibility and milk yield and composition of dairy cows. Livest. Prod. Sci. 76:71-79. https://doi.org/10.1016/S0301-6226(02)00009-X
  10. Caton, J. S., W. C. Hoefler, M. L. Galyean and M. A. Funk. 1988. Influence of cottonseed meal supplementation and cecal antibiotic infusion in lambs fed low-quality forage. I. Intake, digestibility, nitrogen balance and ruminal and cecal digesta kinetics. J. Anim. Sci. 66:2253-2261.
  11. Chanjula, P., M. Wanapat, C. Wachirapakorn and P. Rowlinson. 2004. Effect of synchronizing starch sources and protein (NPN) in the rumen on feed intake, rumen microbial fermentation, nutrient utilization and performance of lactating dairy cows. Asian-Aust. J. Anim. Sci. 17:1400-1410. https://doi.org/10.5713/ajas.2004.1400
  12. Chantaprasarn, N. and M. Wanapat. 2008. Effects of sunflower oil supplementation in cassava hay based-diets for lactating dairy cows. Asian-Aust. J. Anim. Sci. 21:42-50. https://doi.org/10.5713/ajas.2008.60421
  13. Chen, X. B. and M. J. Gomes. 1995. Estimation of microbial protein supply to sheep and cattle based on urinary excretion of purine perivatives -an overview of the technical details. Occasional Publication 1992. International Feed Resources Unit, Rowett Research Institute, Aberdeen, UK.
  14. Chen, X. B., D. J. Kyle and E. R. Orskov. 1993. Measurement of allantoin in urine and plasma by high-performance liquid chromatography with pre-column derivatization. J. Chromathogr. 617:241-247. https://doi.org/10.1016/0378-4347(93)80494-O
  15. Clark, J. H., T. H. Klusmeyer and M. R. Cameron. 1992. Microbial protein synthesis and flows of nitrogen fractions to the duodenum of dairy cows. J. Dairy Sci. 75:2304-2323. https://doi.org/10.3168/jds.S0022-0302(92)77992-2
  16. Clark, J. H., M. R. Murphy and B. A. Crooker. 1987. Supplying the protein needs of dairy cattle from by-product feeds. J. Dairy Sci. 70:1092-1109. https://doi.org/10.3168/jds.S0022-0302(87)80116-9
  17. Corbtt, J. C. and T. N. Edey. 1977. Ovulation in ewes given formaldehyde-treated or untreated casein in maintenance-energy rations. Aust. J. Agric. Res. 28:491-500. https://doi.org/10.1071/AR9770491
  18. Dijkstra, J. 1994. Production and absorption of volatile fatty acids in the rumen. Livest. Prod. Sci. 39:61-69. https://doi.org/10.1016/0301-6226(94)90154-6
  19. Erfle, J. D., F. D. Sauer and S. Mahadevan. 1976. Effect of ammonia concentration on activity of enzymes of ammonia assimilation and on synthesis of amino acids by mixed rumen bacteria in continuous culture. J. Dairy Sci. 60:1064-1072.
  20. Etman, K. E. I., I. M. Soliman, I. A. S. Abou-Selim and A. A. Soliman. 1993. Cassava (Manihot esculenta, crantz.) in rations of buffaloes: E. Effect of partial replacement of yellow corn by cassava pellets in rations of growing buffaloes calves. In: Prospects of buffaloes production in the Mediterranean and the middle east (Ed. M. Shafie, A. H. Barkawi, S. A. Ibrahim and R. R. Sadek). Cairo, Egypt. Pudoc Scientific Publishers, Wageningen. pp. 302-304.
  21. Galyean, M. 1989. Laboratory procedure in animal nutrition research. Department of Animal and Life Science. New Mexico State University, USA. p. 193.
  22. Granum, G., M. Wanapat, P. Pakdee, C. Wachirapakorn and W. Toburan. 2007. A comparative study on the effect of cassava hay supplementation in swamp buffaloes (Bubalus bubalis) and cattle (Bos indicus). Asian-Aust. J. Anim. Sci. 20:1389-1396. https://doi.org/10.5713/ajas.2007.1389
  23. Firkins, J. L. 1996. Maximizing microbial protein synthesis in the rumen. J. Nutr. 126:1347S-1354S.
  24. Firkins, J. L., A. N. Hristov, M. B. Hall, G. A. Varga and N. R. St-Pierre. 2006. Integration of ruminal metabolism in dairy cattle. J. Dairy Sci. 89:E31-E51. https://doi.org/10.3168/jds.S0022-0302(06)72362-1
  25. Foiklang, S. and M. Wanapat, 2010. Effect of carbohydrate sources and hi-pro feed on rumen fermentation and nutrient digestibility in beef cattle. Proceeding of the 11st Animal Science Agriculture Seminar, Department of Animal Science, Khon Kaen University.
  26. Hungate, R. E. 1966. The rumen and its microbes. Academic Press. New York and London. p. 533.
  27. Hungate, R. E. 1969. A roll tube method for cultivation of strict anaerobes. In: Methods in Microbiology, edited by Norris (Ed. J. R. Norris and D. W. Ribbons), New York. Academic. p. 313-117.
  28. Keady, T. W. J. and C. S. Mayne. 2001. The effects of concentrate energy source on feed intake and rumen fermentation parameters of dairy cows offered a range of grass silage. Anim. Feed Sci. Technol. 90:117-129. https://doi.org/10.1016/S0377-8401(01)00220-6
  29. Khampa, S., M. Wanapat, C. Wachirapakorn, N. Nontaso and M. Wattiaux. 2006. Effects of urea level and sodium DL-malate in concentrate containing high cassava chip on ruminal fermentation efficiency, microbial protein synthesis in lactating dairy cows raised under tropical condition. Asian-Aust. J. Anim. Sci. 19:837-841. https://doi.org/10.5713/ajas.2006.837
  30. Khan, M. A., H. J. Lee, W. S. Lee, H. S. Kim, S. B. Kim, S. B. Park, K. S. Baek, J. K. Ha and Y. J. Choi. 2008. Starch source evaluation in calf starter: II. Ruminal parameters, rumen development, nutrient digestibilities, and nitrogen utilization in Holstein calves. J. Dairy Sci. 91:1140-1149. https://doi.org/10.3168/jds.2007-0337
  31. Lesmeister, K. E. and A. J. Heinrichs. 2004. Effects of corn processing on growth characteristics, rumen development and rumen parameters in neonatal dairy calves. J. Dairy Sci. 87:3439-3450. https://doi.org/10.3168/jds.S0022-0302(04)73479-7
  32. Margarida, M., B. Chhorn, L. Phillip and H. Klesius. 2002. Effect of soybean meal replacement by cottonseed meal and iron supplementation on growth, immune response and resistance of Channel Catfish (Ictalurus puctatus) to Edwardsiella ictaluri challenge. Aquaculture 207:263-279. https://doi.org/10.1016/S0044-8486(01)00740-2
  33. Owen, F. G., D. W. Kellogg and W. T. Howard. 1967. Effect of molasses in normal- and high-grain rations on utilization of nutrients for lactation. J. Dairy Sci. 50:1120-1125. https://doi.org/10.3168/jds.S0022-0302(67)87576-3
  34. Promkot, C. and M. Wanapat. 2005. Effect of level of crude protein and use of cottonseed meal in diets containing cassava chips and rice straw for lactating dairy cows. Asian-Aust. J. Anim. Sci. 18:502-511. https://doi.org/10.5713/ajas.2005.502
  35. Promkot, C., M. Wanapat, C. Wachirapakorn and C. Navanukraw. 2007. Influence of sulfur on fresh cassava foliage and cassava hay incubated in rumen fluid of beef cattle. Asian-Aust. J. Anim. Sci. 20:1424-1432. https://doi.org/10.5713/ajas.2007.1424
  36. Richardson, J. M., R. G. Wilkinson and L. A. Sinclair. 2003. Synchrony of nutrient supply to the rumen and dietary energy source and their effects on the growth and metabolism of lambs. J. Anim. Sci. 81:1332-1347.
  37. Rusche, W. C., R. C. Cochran, L. R. Corah, J. S. Stevenson, D. L. Harmon, R. T. Jr. Brandt. and J. E. Minton. 1993. Influence of source and amount of dietary protein on performance, blood metabolites, and reproductive function of primiparous beef cows. J. Anim. Sci. 71:557-563.
  38. Russell, J. B. and J. L. Rychlik. 2001. Factors that alter rumen microbial ecology. Science 292:1119-1122. https://doi.org/10.1126/science.1058830
  39. Samuel, M., S. Sagathewan, J. Thomas and G. Mathen. 1997. An HPLC method for estimation of volatile fatty acids of ruminal fluid. Indian J. Anim. Sci. 67:805-807.
  40. SAS. User's Guide: Statistic, Version 5. Edition. 1996. SAS. Inst Cary, NC., USA.
  41. Sarwar, M., J. L. Firkins and M. Eastridge. 1991. Effect of replacing neutral detergent fiber of forage with soyhulls and corn gluten feed for dairy heifers. J. Dairy Sci. 74:1006-1017. https://doi.org/10.3168/jds.S0022-0302(91)78250-7
  42. Singh, M., K. Sharma, N. Dutta, P. Singh, A. K. Verma and U. R. Mehra. 2007. Estimation of rumen microbial protein supply using urinary purine derivatives excretion in crossbred calves fed at different levels of feed intake. Asian-Aust. J. Anim. Sci. 20:1567-1574. https://doi.org/10.5713/ajas.2007.1567
  43. Sommart, K., D. S. Parker, P. Rowlinson and M. Wanapat. 2000. Fermentation characteristics and microbial protein synthesis in an in vitro system using cassava, rice straw and dried ruzi grass as substrates. Asian-Aust. J. Anim. Sci. 13:1084-1093. https://doi.org/10.5713/ajas.2000.1084
  44. Sommart, K., M. Wanapat, P. Rowlinson and D. S. Parker. 1997. The effects of nonstructural carbohydrate and dietary protein on feed intake, ruminal fermentation and cow performance. In: Proceedings of the British Society of Animal Science, March 1997. British Society of Animal, Scarborough, England, UK. p. 97.
  45. Stern, M. D. and W. H. Hoover. 1979. Methods for determining and factors affecting rumen microbial protein synthesis: a review. J. Anim. Sci. 49:1590-1603.
  46. Swartz, L. A., A. J. Heinrichs, G. A. Varga and L. D. Muller. 1991. Effects of varying dietary undegradable protein on dry matter intake, growth, and carcass composition of Holstein calves. J. Dairy Sci. 74:3884-3890. https://doi.org/10.3168/jds.S0022-0302(91)78581-0
  47. Tajima, M., R. I. Aminov, T. Nagamine, H. Matsui, M. Nakamura and Y. Benno. 2001. Diet-dependent shifts in the bacterial population of the rumen revealed with real-Time PCR. Appl. Environ. Microbiol. 67:2766-2774. https://doi.org/10.1128/AEM.67.6.2766-2774.2001
  48. Titi, H. H. 2003. Replacing soybean meal with sunflower meal with or without fibrolytic enzymes in fattening diets of goat kids. Small Rumin. Res. 48:45-50. https://doi.org/10.1016/S0921-4488(03)00003-8
  49. Van Soest, P. J., J. B. Robertson and B. A. Lewis. 1991. Methods of dietary fiber, neutral detergent fiber and non-starch carbohydrates in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  50. Wanapat, M. 2003. Manipulation of cassava cultivation and utilization to improve protein to energy biomass for livestock feeding in the tropics. Asian-Aust. J. Anim. Sci. 16:463-472. https://doi.org/10.5713/ajas.2003.463
  51. Wanapat, M. and S. Khampa. 2007. Effect of levels of supplementation of concentrate containing high levels of cassava chip on rumen ecology, microbial N supply and digestibility of nutrients in beef cattle. Asian-Aust. J. Anim. Sci. 20:75-81.
  52. Wanapat, M. and R. Pilajan. 2009. Effect of hi-pro feed and carbohydrate sources on rumen fermentation and milk production in dairy milking cows. Proceeding of the 10th Animal Science Agriculture Seminar, Department of Animal Science, Khon Kaen University.
  53. Wanapat, M., R. Pilajun and P. Kongmun. 2009a. Ruminal ecology of swamp buffalo as influenced by dietary sources. Anim. Feed Sci. Technol. 151:205-214. https://doi.org/10.1016/j.anifeedsci.2009.01.017
  54. Wanapat, M., R. Pilajun and P. Rowlinson. 2012. Effect of carbohydrate source and cottonseed meal level in the concentrate: IV. Feed intake, rumen fermentation and milk production in milking cows. Trop. Anim. Health Prod. 45:447-453.
  55. Wanapat, M., S. Polyorach, K. Boonnop, C. Mapato and A. Cherdthong. 2009b. Effects of treating rice straw with urea or urea and calcium hydroxide upon intake, digestibility, rumen fermentation and milk yield of dairy cows. Livest. Sci. 125:238-243. https://doi.org/10.1016/j.livsci.2009.05.001
  56. Wang, Y. H., M. Xua, F. N. Wang, Z. P. Yu, J. H. Yao, L. S. Zan and F. X. Yang. 2009. Effect of dietary starch on rumen and small intestine morphology and digesta pH in goats. Livest. Sci. 122:48-52. https://doi.org/10.1016/j.livsci.2008.07.024
  57. Wora-Anu, S., M. Wanapat, C. Wachirapakorn and N. Nontaso. 2007. Effect of roughage sources on cellulolytic bacteria and rumen ecology of beef cattle. Asian-Aust. J. Anim. Sci. 20:1705-1712. https://doi.org/10.5713/ajas.2007.1705

Cited by

  1. Influence of Water Hyacinth Plus Dried Cassava Peels Supplementation on Nutrient Digestibility and Nitrogen Balance of Sheep vol.11, pp.4, 2017, https://doi.org/10.3923/ajas.2017.165.170
  2. Influence of Aspergillus niger or Saccharomyces cerevisiae-Fermented Napier Grass (Pennisetum purpureum) Mixed with Fresh Cassava Root on Blood Parameters and Nutrient Digestibility in Growing Beef Cattle vol.16, pp.10, 2017, https://doi.org/10.3923/pjn.2017.776.781
  3. Feeding tropical dairy cattle with local protein and energy sources for sustainable production vol.46, pp.1, 2018, https://doi.org/10.1080/09712119.2017.1288627
  4. The effect of restricted milk feeding through conventional or step-down methods with or without forage provision in starter feed on performance of Holstein bull calves1 vol.93, pp.8, 2015, https://doi.org/10.2527/jas.2014-8863
  5. Effect of supplemental dietary slow-release urea on growth performance and physiological status of dairy heifers vol.89, pp.7, 2018, https://doi.org/10.1111/asj.13010
  6. Effect of urea- and molasses-treated sugarcane bagasse on nutrient composition and in vitro rumen fermentation in dairy cows vol.52, pp.6, 2013, https://doi.org/10.1016/j.anres.2018.11.010
  7. Effects of inter‐species chromosome substitution on cottonseed mineral and protein nutrition profiles vol.112, pp.5, 2013, https://doi.org/10.1002/agj2.20264