References
- Andrianasolo, E. H., Haramaty, L., Vardi, A., White, E., Lutz, R. & Falkowski, P. 2008. Apoptosis-inducing galactolipids from a cultured marine diatom, Phaeodactylim tricornutum. J. Nat. Prod.71:1197-1201.
- Association of Official Analytical Chemists (AOAC). 1990. Official methods of analysis of the Association of Official Analytical Chemists. 16th ed. Association of Official Analytical Chemists, Arlington, VA, 684 pp.
- Becker, E. W. 2007. Micro-algae as a source of protein. Biotechnol. Adv. 25:207-210. https://doi.org/10.1016/j.biotechadv.2006.11.002
- Borowitzka, M. A. 1995. Microalgae as sources of pharamaceuticals and other biologically active compounds. J. Appl. Phycol. 7:3-15. https://doi.org/10.1007/BF00003544
- Desbois, A. P., Meams-Spragg, A. & Smith, V. J. 2009. A fatty acid from the diatom Phaeodactylum tricornutum is antibacterial against diverse bacteria including multi-resistant Staphylococcus aureus (MRSA). Mar. Biotechnol. 11:45-52. https://doi.org/10.1007/s10126-008-9118-5
- Dvir, I., Stark, A. H., Chayoth, R., Madar, Z. & Arad, S. M. 2009. Hypochlesterolemic effects of nutraceuticals produced from the red microalga Porphyridium sp. in rats. Nutrients 1:156-167. https://doi.org/10.3390/nu1020156
- Guzman, S., Gato, A., Lamela, M., Freire-Garabal, M. & Calleja, J. M. 2003. Anti-inflammatory and immunomodulatory activities of polysaccharide form Chlorella stigmatophora and Phaeodactylum tricornutum. Phytother. Res.17:665-670. https://doi.org/10.1002/ptr.1227
- Hong, J. W., Kim, S. A., Chang, J., Yi, J., Jeong, J., Kim, S., Kim, S. H. & Yoon, S. -H. 2012. Isolation and description of a Korean microalga, Asterarcys quadricellulare KNUA020, and analysis of its biotechnological potential. Algae 27:197-203. https://doi.org/10.4490/algae.2012.27.3.197
- Imhoff, J. F., Labes, A. & Wiese, J. 2011. Bio-mining the microbial treasures of the ocean: new natural products. Biotechnol. Adv. 29:468-482. https://doi.org/10.1016/j.biotechadv.2011.03.001
- Kim, S. K. & Wijesekara, I. 2010. Development and biological activities of marine-derived bioactive peptides: a review. J. Funct. Foods 2:1-9. https://doi.org/10.1016/j.jff.2010.01.003
- Lee, M. H., Lee, J. M., Jun, S. H., Lee, S. H., Kim, N. W., Lee, J. H., Ko, N. Y., Mun, S. H., Kim, B. K., Lim, B. O., Choi, D. K. & Choi, W. S. 2007. The anti-inflammatory effects of Pyrolae herba extract through the inhibition of the expression of inducible nitric oxide synthase (iNOS) and NO production. J. Ethnopharmacol. 112:49-54. https://doi.org/10.1016/j.jep.2007.01.036
- Liang, S., Liu, X., Chen, F. & Chen, Z. 2004. Current microalgal health food R & D activities in China. Hydrobiologia 512:45-48. https://doi.org/10.1023/B:HYDR.0000020366.65760.98
- Morris, H. J., Carrillo, O., Almarales, A., Bermudez, R. C., Lebeque, Y., Fontaine, R., Liauradó, G. & Beltran, Y. 2007. Immunostimulant activity of an enzymatic protein hydrolysate from green micralga Chlorella vulgaris on undernourished mice. Enzyme Microb. Technol. 40:456-460. https://doi.org/10.1016/j.enzmictec.2006.07.021
- Plaza, M., Cifuentes, A. & Ibanez, E. 2008. In the search of new functional food ingredients from algae. Trends Food Sci. Technol. 19:31-39. https://doi.org/10.1016/j.tifs.2007.07.012
- Plaza, M., Herrero, M., Cifuentes, A. & Ibanez, E. 2009. Innovative natural functional ingredients from microalgae. J. Agr. Food Chem. 57:7159-7170. https://doi.org/10.1021/jf901070g
- Rasmussen, B., Fletcher, I. R., Brocks, J. J. & Kilburn, M. R. 2008. Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455:1101-1114. https://doi.org/10.1038/nature07381
- Samarakoon, K. W., O-Nam, K., Ko, J. Y., Lee, J. -H., Kang, M. -C., Kim, D., Lee, J. B., Lee, J. -S. & Jeon, Y. -J. 2013. Purification and identification of novel angiotensin-I converting enzyme (ACE) inhibitory peptides from cultured marine microalgae (Nannochloropsis oculata) protein hydrolysate. J. Appl. Phycol. http://dx.doi.org/10.1007/ s10811-013-9994-6.
- Sheih, I. C., Fang, T. J., Wu, T. K. & Lin, P. H. 2010. Anticancer and antioxidant activities of the peptide fraction from algae protein in waste. J. Agric. Food Chem. 58:1202-1207. https://doi.org/10.1021/jf903089m
- Sheih, I. C., Wu, T. K. & Fang, T. J. 2009. Antioxidant properties of a new antioxidative peptide from algae protein hydrolysate in different oxidation systems. Bioresour. Technol. 100:3419-3425. https://doi.org/10.1016/j.biortech.2009.02.014
- Wadleigh, D. J., Reddy, S. T., Kopp, E., Ghosh, S. & Herschman, H. R. 2000. Transcriptional activation of the cyclooxygenase-2 gene in endotoxin-treated RAW 264.7 macro-phages. J. Biol. Chem. 275:6259-6266. https://doi.org/10.1074/jbc.275.9.6259
- Walne, P. R. 1966. Experiments in the large-scale culture of larvae of Ostrea edulis L. Fish. Invest. Ser. 2 25:1-53.
Cited by
- Long-term dinoflagellate culture performance in a commercial photobioreactor: Amphidinium carterae case vol.218, 2016, https://doi.org/10.1016/j.biortech.2016.06.128
- Polyphenol-rich fraction from Ecklonia cava (a brown alga) processing by-product reduces LPS-induced inflammation in vitro and in vivo in a zebrafish model vol.29, pp.2, 2014, https://doi.org/10.4490/algae.2014.29.2.165
- Bioactivity Screening of Microalgae for Antioxidant, Anti-Inflammatory, Anticancer, Anti-Diabetes, and Antibacterial Activities vol.3, 2016, https://doi.org/10.3389/fmars.2016.00068
- Gallic acid isolated from Spirogyra sp. improves cardiovascular disease through a vasorelaxant and antihypertensive effect vol.39, pp.2, 2015, https://doi.org/10.1016/j.etap.2015.02.006
- Mutation Breeding of Extracellular Polysaccharide-Producing Microalga Crypthecodinium cohnii by a Novel Mutagenesis with Atmospheric and Room Temperature Plasma vol.16, pp.4, 2015, https://doi.org/10.3390/ijms16048201
- De novo transcriptome of the cosmopolitan dinoflagellate Amphidinium carterae to identify enzymes with biotechnological potential vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-12092-1
- Marine microorganisms as a promising and sustainable source of bioactive molecules vol.128, 2017, https://doi.org/10.1016/j.marenvres.2016.05.002
- Antioxidant and anti-inflammatory activities of porphyran isolated from discolored nori (Porphyra yezoensis) vol.74, 2015, https://doi.org/10.1016/j.ijbiomac.2014.11.043
- Anti-inflammatory effect of enzymatic hydrolysates fromStyela clavaflesh tissue in lipopolysaccharide-stimulated RAW 264.7 macrophages andin vivozebrafish model vol.9, pp.3, 2015, https://doi.org/10.4162/nrp.2015.9.3.219
- Microalgae: Fast-Growth Sustainable Green Factories vol.45, pp.16, 2015, https://doi.org/10.1080/10643389.2014.966426
- Properties of microalgal enzymatic protein hydrolysates: Biochemical composition, protein distribution and FTIR characteristics vol.6, 2015, https://doi.org/10.1016/j.btre.2015.02.005
- Large-scale bioprospecting of cyanobacteria, micro- and macroalgae from the Aegean Sea vol.33, pp.3, 2016, https://doi.org/10.1016/j.nbt.2016.02.002
- Anti-inflammatory effect of polyphenol-rich extract from the red alga Callophyllis japonica in lipopolysaccharide-induced RAW 264.7 macrophages vol.29, pp.4, 2014, https://doi.org/10.4490/algae.2014.29.4.343
- Biotechnological and Pharmacological Applications of Biotoxins and Other Bioactive Molecules from Dinoflagellates vol.15, pp.12, 2017, https://doi.org/10.3390/md15120393
- Anti-inflammatory effects of Phaeodactylum tricornutum extracts on human blood mononuclear cells and murine macrophages vol.30, pp.5, 2018, https://doi.org/10.1007/s10811-017-1352-7
- Marine Microalgae: Promising Source for New Bioactive Compounds vol.16, pp.9, 2018, https://doi.org/10.3390/md16090317
- on Serum and Redox Status in Obese Rats Subjected to a High Fat Diet pp.1765-2847, 2018, https://doi.org/10.3166/phyto-2018-0019
- Antioxidant and anti-inflammatory functionality of ten Sri Lankan seaweed extracts obtained by carbohydrase assisted extraction pp.2092-6456, 2018, https://doi.org/10.1007/s10068-018-0406-1
- Marine Microalgae with Anti-Cancer Properties vol.16, pp.5, 2018, https://doi.org/10.3390/md16050165
- First identification of marine diatoms with anti-tuberculosis activity vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-20611-x
- Inhibition of Pro-inflammatory Mediators and Cytokines by Chlorella Vulgaris Extracts vol.8, pp.2, 2013, https://doi.org/10.4103/0974-8490.172660
- 해양 미세조류 Amphidinium carterae 추출물의 기능성 평가 vol.24, pp.5, 2013, https://doi.org/10.11002/kjfp.2017.24.5.673
- Anti-inflammation and Anti-Cancer Activity of Ethanol Extract of Antarctic Freshwater Microalga, Micractinium sp. vol.15, pp.9, 2013, https://doi.org/10.7150/ijms.26410
- Volatile and phenolic compounds in freshwater diatom Nitzschia palea as a potential oxidative damage protective and anti-inflammatory source vol.15, pp.64, 2013, https://doi.org/10.4103/pm.pm_649_18
- Amphidinol 22, a New Cytotoxic and Antifungal Amphidinol from the Dinoflagellate Amphidinium carterae vol.17, pp.7, 2019, https://doi.org/10.3390/md17070385
- Anti-Inflammatory and Anti-Aging Evaluation of Pigment-Protein Complex Extracted from Chlorella Pyrenoidosa vol.17, pp.10, 2013, https://doi.org/10.3390/md17100586
- Monoacylglycerides from the Diatom Skeletonema marinoi Induce Selective Cell Death in Cancer Cells vol.17, pp.11, 2013, https://doi.org/10.3390/md17110625
- Morphology, growth, toxin production, and toxicity of cultured marine benthic dinoflagellates from Brazil and Cuba vol.31, pp.6, 2013, https://doi.org/10.1007/s10811-019-01855-0
- Lysophosphatidylcholines and Chlorophyll-Derived Molecules from the Diatom Cylindrotheca closterium with Anti-Inflammatory Activity vol.18, pp.3, 2013, https://doi.org/10.3390/md18030166
- In Vitro and In Vivo Studies on Hexane Fraction of Nitzschia palea, a Freshwater Diatom for Oxidative Damage Protective and Anti-inflammatory Response vol.30, pp.2, 2020, https://doi.org/10.1007/s43450-020-00008-6
- Investigation of Growth, Lipid Productivity, and Fatty Acid Profiles in Marine Bloom-Forming Dinoflagellates as Potential Feedstock for Biodiesel vol.8, pp.6, 2020, https://doi.org/10.3390/jmse8060381
- Marine Bioactive Peptides—An Overview of Generation, Structure and Application with a Focus on Food Sources vol.18, pp.8, 2013, https://doi.org/10.3390/md18080424
- Toxicity Bioassay and Cytotoxic Effects of the Benthic Marine Dinoflagellate Amphidinium operculatum vol.11, pp.2, 2013, https://doi.org/10.3390/jox11020003
- Promising Activities of Marine Natural Products against Hematopoietic Malignancies vol.9, pp.6, 2021, https://doi.org/10.3390/biomedicines9060645
- Microalgal Lipid Extracts Have Potential to Modulate the Inflammatory Response: A Critical Review vol.22, pp.18, 2013, https://doi.org/10.3390/ijms22189825
- An integrated approach for the efficient separation of specialty compounds from biomass of the marine microalgae Amphidinium carterae vol.342, pp.None, 2013, https://doi.org/10.1016/j.biortech.2021.125922