DOI QR코드

DOI QR Code

In vitro studies of anti-inflammatory and anticancer activities of organic solvent extracts from cultured marine microalgae

  • Samarakoon, Kalpa W. (Department of Marine Life Science, Jeju National University) ;
  • Ko, Ju-Young (Department of Marine Life Science, Jeju National University) ;
  • Shah, Md. Mahfuzur Rahman (Jeju Sea Grant Center, Department of Earth and Marine Sciences, College of Ocean Sciences Jeju National University) ;
  • Lee, Ji-Hyeok (Department of Marine Life Science, Jeju National University) ;
  • Kang, Min-Cheol (Department of Marine Life Science, Jeju National University) ;
  • Kwon, O-Nam (Marine Biology Center for Research and Education, Gangneung-Wonju National University) ;
  • Lee, Joon-Baek (Jeju Sea Grant Center, Department of Earth and Marine Sciences, College of Ocean Sciences Jeju National University) ;
  • Jeon, You-Jin (Department of Marine Life Science, Jeju National University)
  • Received : 2013.01.18
  • Accepted : 2013.02.19
  • Published : 2013.03.15

Abstract

Marine microalgae are a promising source of organisms that can be cultured and targeted to isolate the broad spectrum of functional metabolites. In this study, two species of cyanobacteria, Chlorella ovalis Butcher and Nannchloropsis oculata Droop, one species of bacillariophyta, Phaeoductylum tricornutum Bohlin, and one species of Dinophyceae, Amphidinium carterae (Hulburt) were cultured and biomasses used to evaluate the proximate comical compositions. Among the determined proximate chemical compositions of the cultured marine microalgae, the highest content of crude proteins and lipids were exhibited in P. tricornutum and A. carterae, respectively. Solvent-solvent partition chromatography was subjected to fractionate each of the cultured species and separated n-hexane, chloroform, ethyl acetate, and aqueous fractions. Nitric oxide production inhibitory level (%) and cytotoxicity effect on lipo-polysaccharide-induced RAW 264.7 macrophages were performed to determine the anti-inflammatory activity. N. oculata hexane and chloroform fractions showed significantly the strongest anti-inflammatory activity at $6.25{\mu}g\;mL^{-1}$ concentration. The cancer cell growth inhibition (%) was determined on three different cell lines including HL-60 (a human promyelocytic leukemia cell line), A549 (a human lung carcinoma cell line), and B16F10 (a mouse melanoma cell line), respectively. Among the extracts, C. ovalis ethyl acetate and A. carterae chloroform fractions suppressed the growth of HL-60 cells significantly at 25 and $50{\mu}g\;mL^{-1}$ concentrations. Thus, the cultured marine microalgae solvent extracts may have potentiality to isolate pharmacologically active metabolites further using advance chromatographic steps. Hence, the cultured marine microalgae can be described as a good candidate for the future therapeutic uses.

Keywords

References

  1. Andrianasolo, E. H., Haramaty, L., Vardi, A., White, E., Lutz, R. & Falkowski, P. 2008. Apoptosis-inducing galactolipids from a cultured marine diatom, Phaeodactylim tricornutum. J. Nat. Prod.71:1197-1201.
  2. Association of Official Analytical Chemists (AOAC). 1990. Official methods of analysis of the Association of Official Analytical Chemists. 16th ed. Association of Official Analytical Chemists, Arlington, VA, 684 pp.
  3. Becker, E. W. 2007. Micro-algae as a source of protein. Biotechnol. Adv. 25:207-210. https://doi.org/10.1016/j.biotechadv.2006.11.002
  4. Borowitzka, M. A. 1995. Microalgae as sources of pharamaceuticals and other biologically active compounds. J. Appl. Phycol. 7:3-15. https://doi.org/10.1007/BF00003544
  5. Desbois, A. P., Meams-Spragg, A. & Smith, V. J. 2009. A fatty acid from the diatom Phaeodactylum tricornutum is antibacterial against diverse bacteria including multi-resistant Staphylococcus aureus (MRSA). Mar. Biotechnol. 11:45-52. https://doi.org/10.1007/s10126-008-9118-5
  6. Dvir, I., Stark, A. H., Chayoth, R., Madar, Z. & Arad, S. M. 2009. Hypochlesterolemic effects of nutraceuticals produced from the red microalga Porphyridium sp. in rats. Nutrients 1:156-167. https://doi.org/10.3390/nu1020156
  7. Guzman, S., Gato, A., Lamela, M., Freire-Garabal, M. & Calleja, J. M. 2003. Anti-inflammatory and immunomodulatory activities of polysaccharide form Chlorella stigmatophora and Phaeodactylum tricornutum. Phytother. Res.17:665-670. https://doi.org/10.1002/ptr.1227
  8. Hong, J. W., Kim, S. A., Chang, J., Yi, J., Jeong, J., Kim, S., Kim, S. H. & Yoon, S. -H. 2012. Isolation and description of a Korean microalga, Asterarcys quadricellulare KNUA020, and analysis of its biotechnological potential. Algae 27:197-203. https://doi.org/10.4490/algae.2012.27.3.197
  9. Imhoff, J. F., Labes, A. & Wiese, J. 2011. Bio-mining the microbial treasures of the ocean: new natural products. Biotechnol. Adv. 29:468-482. https://doi.org/10.1016/j.biotechadv.2011.03.001
  10. Kim, S. K. & Wijesekara, I. 2010. Development and biological activities of marine-derived bioactive peptides: a review. J. Funct. Foods 2:1-9. https://doi.org/10.1016/j.jff.2010.01.003
  11. Lee, M. H., Lee, J. M., Jun, S. H., Lee, S. H., Kim, N. W., Lee, J. H., Ko, N. Y., Mun, S. H., Kim, B. K., Lim, B. O., Choi, D. K. & Choi, W. S. 2007. The anti-inflammatory effects of Pyrolae herba extract through the inhibition of the expression of inducible nitric oxide synthase (iNOS) and NO production. J. Ethnopharmacol. 112:49-54. https://doi.org/10.1016/j.jep.2007.01.036
  12. Liang, S., Liu, X., Chen, F. & Chen, Z. 2004. Current microalgal health food R & D activities in China. Hydrobiologia 512:45-48. https://doi.org/10.1023/B:HYDR.0000020366.65760.98
  13. Morris, H. J., Carrillo, O., Almarales, A., Bermudez, R. C., Lebeque, Y., Fontaine, R., Liauradó, G. & Beltran, Y. 2007. Immunostimulant activity of an enzymatic protein hydrolysate from green micralga Chlorella vulgaris on undernourished mice. Enzyme Microb. Technol. 40:456-460. https://doi.org/10.1016/j.enzmictec.2006.07.021
  14. Plaza, M., Cifuentes, A. & Ibanez, E. 2008. In the search of new functional food ingredients from algae. Trends Food Sci. Technol. 19:31-39. https://doi.org/10.1016/j.tifs.2007.07.012
  15. Plaza, M., Herrero, M., Cifuentes, A. & Ibanez, E. 2009. Innovative natural functional ingredients from microalgae. J. Agr. Food Chem. 57:7159-7170. https://doi.org/10.1021/jf901070g
  16. Rasmussen, B., Fletcher, I. R., Brocks, J. J. & Kilburn, M. R. 2008. Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455:1101-1114. https://doi.org/10.1038/nature07381
  17. Samarakoon, K. W., O-Nam, K., Ko, J. Y., Lee, J. -H., Kang, M. -C., Kim, D., Lee, J. B., Lee, J. -S. & Jeon, Y. -J. 2013. Purification and identification of novel angiotensin-I converting enzyme (ACE) inhibitory peptides from cultured marine microalgae (Nannochloropsis oculata) protein hydrolysate. J. Appl. Phycol. http://dx.doi.org/10.1007/ s10811-013-9994-6.
  18. Sheih, I. C., Fang, T. J., Wu, T. K. & Lin, P. H. 2010. Anticancer and antioxidant activities of the peptide fraction from algae protein in waste. J. Agric. Food Chem. 58:1202-1207. https://doi.org/10.1021/jf903089m
  19. Sheih, I. C., Wu, T. K. & Fang, T. J. 2009. Antioxidant properties of a new antioxidative peptide from algae protein hydrolysate in different oxidation systems. Bioresour. Technol. 100:3419-3425. https://doi.org/10.1016/j.biortech.2009.02.014
  20. Wadleigh, D. J., Reddy, S. T., Kopp, E., Ghosh, S. & Herschman, H. R. 2000. Transcriptional activation of the cyclooxygenase-2 gene in endotoxin-treated RAW 264.7 macro-phages. J. Biol. Chem. 275:6259-6266. https://doi.org/10.1074/jbc.275.9.6259
  21. Walne, P. R. 1966. Experiments in the large-scale culture of larvae of Ostrea edulis L. Fish. Invest. Ser. 2 25:1-53.

Cited by

  1. Long-term dinoflagellate culture performance in a commercial photobioreactor: Amphidinium carterae case vol.218, 2016, https://doi.org/10.1016/j.biortech.2016.06.128
  2. Polyphenol-rich fraction from Ecklonia cava (a brown alga) processing by-product reduces LPS-induced inflammation in vitro and in vivo in a zebrafish model vol.29, pp.2, 2014, https://doi.org/10.4490/algae.2014.29.2.165
  3. Bioactivity Screening of Microalgae for Antioxidant, Anti-Inflammatory, Anticancer, Anti-Diabetes, and Antibacterial Activities vol.3, 2016, https://doi.org/10.3389/fmars.2016.00068
  4. Gallic acid isolated from Spirogyra sp. improves cardiovascular disease through a vasorelaxant and antihypertensive effect vol.39, pp.2, 2015, https://doi.org/10.1016/j.etap.2015.02.006
  5. Mutation Breeding of Extracellular Polysaccharide-Producing Microalga Crypthecodinium cohnii by a Novel Mutagenesis with Atmospheric and Room Temperature Plasma vol.16, pp.4, 2015, https://doi.org/10.3390/ijms16048201
  6. De novo transcriptome of the cosmopolitan dinoflagellate Amphidinium carterae to identify enzymes with biotechnological potential vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-12092-1
  7. Marine microorganisms as a promising and sustainable source of bioactive molecules vol.128, 2017, https://doi.org/10.1016/j.marenvres.2016.05.002
  8. Antioxidant and anti-inflammatory activities of porphyran isolated from discolored nori (Porphyra yezoensis) vol.74, 2015, https://doi.org/10.1016/j.ijbiomac.2014.11.043
  9. Anti-inflammatory effect of enzymatic hydrolysates fromStyela clavaflesh tissue in lipopolysaccharide-stimulated RAW 264.7 macrophages andin vivozebrafish model vol.9, pp.3, 2015, https://doi.org/10.4162/nrp.2015.9.3.219
  10. Microalgae: Fast-Growth Sustainable Green Factories vol.45, pp.16, 2015, https://doi.org/10.1080/10643389.2014.966426
  11. Properties of microalgal enzymatic protein hydrolysates: Biochemical composition, protein distribution and FTIR characteristics vol.6, 2015, https://doi.org/10.1016/j.btre.2015.02.005
  12. Large-scale bioprospecting of cyanobacteria, micro- and macroalgae from the Aegean Sea vol.33, pp.3, 2016, https://doi.org/10.1016/j.nbt.2016.02.002
  13. Anti-inflammatory effect of polyphenol-rich extract from the red alga Callophyllis japonica in lipopolysaccharide-induced RAW 264.7 macrophages vol.29, pp.4, 2014, https://doi.org/10.4490/algae.2014.29.4.343
  14. Biotechnological and Pharmacological Applications of Biotoxins and Other Bioactive Molecules from Dinoflagellates vol.15, pp.12, 2017, https://doi.org/10.3390/md15120393
  15. Anti-inflammatory effects of Phaeodactylum tricornutum extracts on human blood mononuclear cells and murine macrophages vol.30, pp.5, 2018, https://doi.org/10.1007/s10811-017-1352-7
  16. Marine Microalgae: Promising Source for New Bioactive Compounds vol.16, pp.9, 2018, https://doi.org/10.3390/md16090317
  17. on Serum and Redox Status in Obese Rats Subjected to a High Fat Diet pp.1765-2847, 2018, https://doi.org/10.3166/phyto-2018-0019
  18. Antioxidant and anti-inflammatory functionality of ten Sri Lankan seaweed extracts obtained by carbohydrase assisted extraction pp.2092-6456, 2018, https://doi.org/10.1007/s10068-018-0406-1
  19. Marine Microalgae with Anti-Cancer Properties vol.16, pp.5, 2018, https://doi.org/10.3390/md16050165
  20. First identification of marine diatoms with anti-tuberculosis activity vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-20611-x
  21. Inhibition of Pro-inflammatory Mediators and Cytokines by Chlorella Vulgaris Extracts vol.8, pp.2, 2013, https://doi.org/10.4103/0974-8490.172660
  22. 해양 미세조류 Amphidinium carterae 추출물의 기능성 평가 vol.24, pp.5, 2013, https://doi.org/10.11002/kjfp.2017.24.5.673
  23. Anti-inflammation and Anti-Cancer Activity of Ethanol Extract of Antarctic Freshwater Microalga, Micractinium sp. vol.15, pp.9, 2013, https://doi.org/10.7150/ijms.26410
  24. Volatile and phenolic compounds in freshwater diatom Nitzschia palea as a potential oxidative damage protective and anti-inflammatory source vol.15, pp.64, 2013, https://doi.org/10.4103/pm.pm_649_18
  25. Amphidinol 22, a New Cytotoxic and Antifungal Amphidinol from the Dinoflagellate Amphidinium carterae vol.17, pp.7, 2019, https://doi.org/10.3390/md17070385
  26. Anti-Inflammatory and Anti-Aging Evaluation of Pigment-Protein Complex Extracted from Chlorella Pyrenoidosa vol.17, pp.10, 2013, https://doi.org/10.3390/md17100586
  27. Monoacylglycerides from the Diatom Skeletonema marinoi Induce Selective Cell Death in Cancer Cells vol.17, pp.11, 2013, https://doi.org/10.3390/md17110625
  28. Morphology, growth, toxin production, and toxicity of cultured marine benthic dinoflagellates from Brazil and Cuba vol.31, pp.6, 2013, https://doi.org/10.1007/s10811-019-01855-0
  29. Lysophosphatidylcholines and Chlorophyll-Derived Molecules from the Diatom Cylindrotheca closterium with Anti-Inflammatory Activity vol.18, pp.3, 2013, https://doi.org/10.3390/md18030166
  30. In Vitro and In Vivo Studies on Hexane Fraction of Nitzschia palea, a Freshwater Diatom for Oxidative Damage Protective and Anti-inflammatory Response vol.30, pp.2, 2020, https://doi.org/10.1007/s43450-020-00008-6
  31. Investigation of Growth, Lipid Productivity, and Fatty Acid Profiles in Marine Bloom-Forming Dinoflagellates as Potential Feedstock for Biodiesel vol.8, pp.6, 2020, https://doi.org/10.3390/jmse8060381
  32. Marine Bioactive Peptides—An Overview of Generation, Structure and Application with a Focus on Food Sources vol.18, pp.8, 2013, https://doi.org/10.3390/md18080424
  33. Toxicity Bioassay and Cytotoxic Effects of the Benthic Marine Dinoflagellate Amphidinium operculatum vol.11, pp.2, 2013, https://doi.org/10.3390/jox11020003
  34. Promising Activities of Marine Natural Products against Hematopoietic Malignancies vol.9, pp.6, 2021, https://doi.org/10.3390/biomedicines9060645
  35. Microalgal Lipid Extracts Have Potential to Modulate the Inflammatory Response: A Critical Review vol.22, pp.18, 2013, https://doi.org/10.3390/ijms22189825
  36. An integrated approach for the efficient separation of specialty compounds from biomass of the marine microalgae Amphidinium carterae vol.342, pp.None, 2013, https://doi.org/10.1016/j.biortech.2021.125922